ARIoTEDef: Adversarially Robust loT Early Defense System
Based on Self-Evolution against Multi-step Attacks

MENGDIE HUANG, Xidian University, Purdue University, China, USA
HYUNWOQO LEE, Korea Institute of Energy Technology, South Korea
ASHISH KUNDU, Cisco Research, USA

XIAOFENG CHEN, Xidian University, China

ANAND MUDGERIKAR, Purdue University, USA

NINGHUI LI, Purdue University, USA

ELISA BERTINO, Purdue University, USA

IoT cyber threats, exemplified by jackware and crypto mining, underscore the vulnerability of IoT devices.
Due to the multi-step nature of many attacks, early detection is vital for a swift response and preventing
malware propagation. However, accurately detecting early-stage attacks is challenging, as attackers employ
stealthy, zero-day, or adversarial machine learning to evade detection. To enhance security, we propose
ARIOTEDef, an Adversarially Robust IoT Early Defense system, which identifies early-stage infections and
evolves autonomously. It models multi-stage attacks based on a cyber kill chain and maintains stage-specific
detectors. When anomalies in the later action stage emerge, the system retroactively analyzes event logs using
an attention-based Seq2Seq model to identify early infections. Then, the infection detector is updated with
information about the identified infections. We have evaluated ARIoTEDef against multi-stage attacks, such
as the Mirai botnet. Results show that the infection detector’s average F1 score increases from 0.31 to 0.87
after one evolution round. We have also conducted an extensive analysis of ARIoTEDef against adversarial
evasion attacks. Our results show that ARIoTEDef is robust and benefits from multiple rounds of evolution.

CCS Concepts: « Networks — Network security; « Security and privacy — Network security; - Com-
puting methodologies — Machine learning.

Additional Key Words and Phrases: IoT, NIDS, multi-step attack, infection identification, Seq2Seq, attention
mechanism, adversarial evasion attack

ACM Reference Format:

Mengdie Huang, Hyunwoo Lee, Ashish Kundu, Xiaofeng Chen, Anand Mudgerikar, Ninghui Li, and Elisa
Bertino. 2024. ARIoTEDef: Adversarially Robust IoT Early Defense System Based on Self-Evolution against
Multi-step Attacks. ACM Trans. Internet Things 1, 1 (May 2024), 33 pages. https://doi.org/XXXXXXX XXXXXXX

This work was supported by Cisco Research, NSF under Grant No. 2112471, Purdue University, and Xidian University.
Authors’ addresses: Mengdie Huang, huan1932@purdue.edu, Xidian University, Purdue University, Xi’an, West Lafayette,
China, USA, 710071, 47907; Hyunwoo Lee, hwlee@kentech.ac kr, Korea Institute of Energy Technology, Naju, South Korea,
58330; Ashish Kundu, ashkundu@cisco.com, Cisco Research, San Jose, USA, 95134; Xiaofeng Chen, xfchen@xidian.edu.cn,
Xidian University, Xi’an, China, 710071; Anand Mudgerikar, amudgeri@purdue.edu, Purdue University, West Lafayette, USA,
47907; Ninghui Li, ninghui@purdue.edu, Purdue University, West Lafayette, USA, 47907; Elisa Bertino, bertino@purdue.edu,
Purdue University, West Lafayette, USA, 47907.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

2577-6207/2024/5-ART $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

HTTPS://ORCID.ORG/0000-0003-3705-7345
HTTPS://ORCID.ORG/0000-0001-7490-9936
HTTPS://ORCID.ORG/0000-0003-1499-5558
HTTPS://ORCID.ORG/0000-0001-5858-5070
HTTPS://ORCID.ORG/0000-0002-7148-0000
HTTPS://ORCID.ORG/0000-0001-8207-9717
HTTPS://ORCID.ORG/0000-0002-4029-7051
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0003-3705-7345
https://orcid.org/0000-0001-7490-9936
https://orcid.org/0000-0003-1499-5558
https://orcid.org/0000-0001-5858-5070
https://orcid.org/0000-0002-7148-0000
https://orcid.org/0000-0001-8207-9717
https://orcid.org/0000-0002-4029-7051
https://doi.org/XXXXXXX.XXXXXXX

2 Huang et al.

1 INTRODUCTION

The Internet of Things (IoT) is a network of physical objects embedded with electronics, software,
and network connectivity. It allows physical objects to collect and exchange data, and to be remotely
sensed and controlled across the network infrastructure. IoT technologies combine the physical
world with computer-based systems, creating countless opportunities for innovative applications.
However, since IoT devices often have access to assets such as sensitive data, cyber-physical systems,
and user credentials [10], they are valuable targets for attackers. IoT devices commonly suffer from
inadequate hardening and infrequent patching. Developing security techniques for IoT devices is
critical yet complex, as their resource constraints make defending themselves a challenge.

Attack campaigns aimed at compromising IoT devices often involve multiple steps to establish a
foothold in the target system. A collection of these steps is called a multi-step attack or multi-
stage attack [19, 38, 48]. For instance, in botnet campaigns such as Reaper [25] or Mozi [41], the
attacker starts by scanning ports for any vulnerable entry points of the target device, and then
attempts to take it over by performing dictionary attacks [44] or zero-day attacks [3]. Once the
attacker establishes a foothold, it can maintain persistence in the system to perform actions such
as spreading malware to other devices, exfiltrating confidential data, or stealing credentials. We
refer to the steps executed by the attacker to establish a foothold in the targeted system as the
early stages and the subsequent steps as the later stages. Early detection of malicious behavior is
critical for spotting potential attacks and preventing the spread of attack effects.

However, it is challenging to detect early-stage threats with both high precision and high recall.
In other words, it is difficult to achieve low false positives (FP) and false negatives (FN) at the
same time. The reason is that to gain a foothold in the target system, the adversary typically
utilizes sophisticated techniques to evade the network intrusion detection system (NIDS), such as
performing stealthy attacks to camouflage their activities (e.g. distributed SSH brute-forcing [21])
or exploiting completely unknown device vulnerabilities (e.g. zero-day attacks) [25, 42, 45].

Some existing work makes use of deep neural networks (DNNs) that are better at learning
complex abnormal patterns for network intrusion detection, such as HAM [29] and SAAE-DNN [50]
which uses stacked autoencoder and gated recurrent unit to strengthen the traffic feature learning,
respectively. However, to detect such attacks and reduce FN, intrusion detectors that are optimized
too strict on the threshold of anomaly class may also falsely identify legitimate changes and noise
in the actual network environment as intrusions, thus generating a significant number of FP and
low F1 score [20]. Furthermore, as machine learning (ML) models are increasingly used as detectors,
an attacker also attempts to evade detection by crafting adversarial samples which are typically
created by adding adversarial perturbations to the original non-adversarial data (clean samples)
with the intention of causing misclassification [14, 31, 51]. Existing IoT early defense efforts against
early-stage attacks rarely consider this new type of threat.

In this paper, to address those issues, we propose an Adversarially Robust IoT Early Defense
(ARIOTEDef) system against a cyber kill chain. A cyber kill chain is a framework to break down
a complex cyber attack into mutually nonexclusive stages or layers [52]. We focus on a cyber
kill chain consisting of three stages where networking communication is involved: early-stage
reconnaissance, early-stage infection, and later-stage action. The ARIoTEDef system is designed
to identify more infection anomalies through the following process (see Figure 1).

e First, we use three independent binary classifiers as per-step detectors to detect malicious
network traffic in three stages: reconnaissance, infection, and action.

e Second, we generate several sequences of network events from the probabilities output by
per-step detectors. Each event contains four probability features, indicating the probability
that the traffic belongs to the four categories of reconnaissance, infection, action, and benign.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 3

Reconnaissance B: 0.466---
_| F5 Window D . __.@ R: 0.412---
Manager B R . I 0.031--

Captured Window Action O%O Per-step | Event | 4:0.087---
Packets (Feature Vector) Detectors
Word (@=1) - Sequence Source IP address
B:0.4, 0.1, 02, 05, ®-® Analyzer Timestamp
Y R:03,,03,02,_ 04 o r
. 0.1, 03, 02, 0.0, | - — O E-
oo -’{ Embedding ,PA:O;Z 03 04 01 ‘ Translatmn’ O l
Sequence t e Tagged Sequence N Detector

of Events Hyperparameter d Sentence of Events =/ Updater

Fig. 1. Architecture of ARIoTEDef

e Hereafter, we use a sequence analyzer to further identify infection events by traversing the
log of the events backward when detecting anomalies related to the action stage of the kill
chain. The main purpose of this step is to detect early-stage infection events and normal
events that were misclassified by the infection detector.

e Finally, according to our designed self-evolution strategy, we retrain the infection detec-
tor with identified events to improve its classification performance on clean samples and
robustness to adversarial evasion samples.

Essentially, when the per-step detector first encounters an unknown early-stage infection pattern,
it may not achieve high recall. However, once the sequence analyzer recognizes the presence of an
early-stage infection through the later-stage action pattern, the corresponding early-stage infection
pattern is identified and the infection detector is prompted to learn it. As a result, ARIOTEDef will
be capable of recalling such early-stage infection attacks later on. The main challenge is to correlate
events in two different stages with potentially long intervals, e.g. correlating a UDP flood in the
action stage with several dictionary attack packets present in the infection stage.

To address this problem, we adopt the sequence-to-sequence (Seq2Seq) translation model used
in language translation tasks. We introduce a novel probability-based embedding method to encode
past events into kill chain steps and design an attention-based infection identification algorithm to
correlate the encoded events with long-term dependencies in different steps. Experimental results
show that our designed Seq2Seq-based analysis algorithm helps to identify infection events leading
to malicious action events. Moreover, our proposed self-evolution mechanism based on identified
infection events also improves the robustness of the infection detector against evasion attacks.

As ARIOTEDef is a NIDS that deploys pre-trained lightweight machine learning models capable
of rapidly detecting intrusion events, it is friendly to resource-constrained IoT scenarios, and
only self-evolution involves a small amount of computation. In particular, we also note that,
depending on the specific hardware characteristics of the IoT devices, training involved in the
evolution can also be performed on an edge server and not necessarily directly on the IoT devices,
as in the case of the device-edge split architecture for IoT host-based intrusion detection [37]. In
addition, our systematic and automated method for early detection and self-evolution is beneficial
to organizations that perform threat hunting [47]. According to a survey [8], many organizations
value threat hunting as it is helpful for early detection and faster repair of vulnerabilities. However,
88% of the respondents say their current systems for threat hunting are immature in terms of formal
processes and automation. It shows the value of ARIOTEDef since it meets such requirements.

In summary, we make the following contributions:

e We propose ARIOTEDef, an adversarial robust NIDS framework, to detect infections in the
early stage of multi-step attacks against IoT devices. We are the first IoT early defense work
that considers the robustness of the detector against ML-based adversarial infection attacks.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

4 Huang et al.

e We design an event sequence analysis algorithm based on Seq2Seq structure and attention
mechanism to identify infection events that already existed by linking past events. It benefits
the detection of infection events that were previously misclassified by the infection detector.

e We carry out comprehensive experiments to assess the effectiveness and robustness of
ARIOTEDef. Results show that our approach is feasible and effective without loss of generality.
The self-evolution strategy also improves the performance when applied to other NIDSes.

e We implement a proof-of-concept of ARIoTEDef system and publicly release it.

An extended abstract of this paper has been published in ESORICS [28]. The main differences
between this paper and the conference version are as follows: Firstly, we added two brand new
sections, 7 and 8, focusing on enhancing self-evolution strategies to reduce FN and validating
the robustness of our defense system against ML-based adversarial and non-adversarial evasion
attacks by presenting comprehensive experimental results. Detailed computation, storage, time
cost analysis, and robustness performance comparison with other robust training solutions have
also been provided. Secondly, we described the algorithm principle of adversarial evasion attacks
in the new subsection 3.2. Also, we presented an interpretation of our defense system’s ability
to be robust against multiple evasion attacks from an architectural design perspective in Section
4.2. Finally, we optimized the entire content, including emphasizing motivation and contributions
related to robustness in Section 1, improving preliminaries in Section 3, refining threat models and
clarifying system architecture in Section 4, and enhancing algorithm formalization in Section 5.

2 RELATED WORK
2.1 NIDS for loT

Kalis [33] is a self-adapting, knowledge-driven NIDS system, which collects knowledge about the
network’s features autonomously and selects relevant detection techniques. Fu et al. [12] designed
an NIDS that models the steps of a protocol with an automaton. Upon receiving a packet, the
automaton corresponding to the packet protocol executes a transition. If there is any deviation
in the execution of a protocol, the NIDS raises the alarm. DoT [39] is a federated self-learning
anomaly detection system, which builds on device-type-specific communication profiles and raises
an alarm upon detecting deviations concerning these profiles. To capture diverse device-type-
specific communication profiles, it uses a federated learning approach for aggregating profiles from
large numbers of clients. Unlike those systems, the focus of ARIOTEDef is to identify infection
events from an attacker’s actions, which is independent to the goals of those systems.

2.2 Detection of Multi-step Attacks

BotHunter by Gu et al. [16] detects malware infections by tracking communication flows between
internal assets and external entities and applying dialog-based correlation. Haas and Fischer
et al. [17] proposed a graph-based alert correlation (GAC). They use a graph-based clustering
algorithm to cluster alarms based on their similarity. Then, each cluster is labeled considering
the communications between attackers and victims within the cluster. Finally, the clusters are
correlated based on the labels. Sadegh et al. [34] proposed Holmes that models the attacks with a
kill chain. From audit logs, they generate a provenance graph, find adversarial activities based on
predefined rules, and map the activities to the corresponding kill chain step. Xueyuan et al. [18]
proposed Unicorn, which exploits provenance graphs to detect advanced persistent threats (APTs)
and uses the clustering approach to detect anomalies without prior knowledge of APT patterns.
Our work differs from those approaches in three aspects:

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 5

e Goals: They use correlation algorithms to automatically detect multi-step attacks, whereas
our approach aims to automatically identify infection vectors and update NIDS after seeing
anomalies in the action step.

e Logs: Although correlation algorithms can be used to identify infection windows, these
methods primarily rely on host events, such as process-related events. Applying such methods
requires scaling IoT devices, which is something we want to avoid.

e Techniques: The above methods mainly rely on graphs to analyze the causality between
events, while ARIoTEDef uses an attention mechanism-based Seq2Seq neural network to
correlate event windows.

3 PRELIMINARIES
3.1 Cyber Kill Chain

A cyber kill chain refers to the multi-step chain of activities an attacker conducts to establish a
persistent and undetected presence in a targeted cyber infrastructure [52]. Although the number
and the name of steps vary, these kill chains commonly break down an attack into the following
five steps: reconnaissance, infection, lateral movement, obfuscation, and actions on targets [19, 48].
Since an NIDS can issue alerts on reconnaissance and infection steps with higher priority and can
also detect network attack actions such as DDoS, in our work, we model a multi-step attack using
a kill chain consisting of the following three steps:

e Reconnaissance: In the first stage, the attacker collects information about the target system
to identify the target’s weaknesses and potential attack opportunities. This may involve
searching publicly available information, scanning networks and systems, collecting social
engineering data of target employees, and so on.
Infection: In this stage, the attacker selects the appropriate attack tool to weaponize the
previous reconnaissance results, such as embedding malware into documents, links, or other
carriers, and then delivers them to the target system through email attachments, malicious
links, infectable external devices, or other means.
Action: In the final stage, the attacker executes attacks based on their ultimate goals, such
as data exfiltration, system disruption, network spreading, etc. The specific actions taken
will depend on the attacker’s motivations, such as directing bots to perform a DDoS attack
with UDP flooding in botnets.

The reconnaissance and infection stages are early stages in a cyber attack as they occur before
the attacker has gained a foothold in the target system. In contrast, the action stage occurs after the
attacker has established a foothold and is considered a later stage in the multi-step attack process.

3.2 Adversarial Evasion Attacks

Adversarial evasion attack refers to a type of attack in which attackers try to use adversarial ML
techniques to evade detection by security systems. Concerning NIDS, these attacks are designed
to make malicious activities or network anomalies appear benign or normal, thus bypassing
ML-based network intrusion detection algorithms. Unlike conventional evasion attacks based on
techniques such as packet segmentation, encryption, and obfuscation, in an adversarial evasion
attack [13, 31, 35, 43], the attacker aims to craft the adversarial sample x* by adding a slight
adversarial perturbation § to the original input x, also known as the clean sample. Commonly,
techniques used for generating adversarial samples in adversarial ML can be divided into two types
according to the goal of the adversary:

e Untargeted Attack: The attacker aims to find a perturbation that maximizes the model’s
prediction error L without focusing on a particular target class. The optimization objective is

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

6 Huang et al.

Table 1. Abbreviations and Notations

Abbreviation Meaning Notation Meaning

IoT Internet of Things x Clean Sample
ARIOTEDef |Adversarial Robust IoT Early Defense € Perturbation Budget

NIDS Network Intrusion Detection System | ||| < € [Adversarial Perturbation

ML Machine Learning x* = x + §|Adversarial Sample
DL Deep Learning w Window
Seq2Seq |Sequence-to-Sequence e Event (Class Probability Distribution for The Window)
LSTM |Long Short-Term Memory e Event Sequence
TP True Positives d Decimal Places
FN False Negatives z Word (Embedded Event)
TN True Negatives z Word Sequence
FP False Positives y Tag
FNR False Negative Rate = % y Tag Sequence
FPR False Positive Rate = % B Benign
Recall [Recall = % R Reconnaissance
Precision |Precision = % I Infection
F1 F1 score=2 » Erecision:Recall A Action

Precision+Recall

shown in Equation (1), where fp denotes a DNN model with trainable parameters 6, € denotes
the I, norm-measured maximum value of allowable perturbation &, y;yy. is the ground truth
label of x, and L is the loss function, which is set to cross-entropy loss by default.

II)I(%XL(fg(x*), ytruE) = max L(fG(x + 5): ytrue) (1)

l18]1p<e
e Targeted Attack: The attacker aims to find a perturbation that leads to the desired mis-
classification to the target class y:qrge:- The optimization objective is shown in Equation

).

n}{&nL(fa (X*), ytarget) = | min L(f9 (X + 5)» ytarget) (2)

[S]lp<e

In other domains, such as multi-class image classification, adversarial samples can often be con-
structed from clean samples from any class. However, for the binary (benign/malicious) classification-
based NIDS, adversarial attacks usually refer to adversarial evasion attacks, and adversarial
samples used in adversary attacks are usually only constructed from malicious samples, to deceive
target detection predicts it as benign. Thus, the adversarial evasion sample x* = x + § can be
generated according to the optimization objective of the untargeted attack with the ground-truth
label y;,,,e setting to malicious, or be constructed according to the optimization objective of the
targeted attack with the target label y;q,ge; Setting to benign. In this work, we only consider
adversarial evasion samples and abbreviate them as adversarial samples. For example, we refer to
adversarial evasion samples constructed from clean samples originally belonging to the infection
category as adversarial infection samples.

According to the level of knowledge an adversary has about the target system, the threats faced
by the NIDS from adversarial evasion attacks are mainly divided into the following two types:

e White-box Adversarial Attack: The adversary has complete knowledge and access to
the target system, including its architecture, parameters, and internal workings. With this
information, the attacker can craft highly optimized adversarial samples.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 7

¢ Black-box Adversarial Attack: The attacker has no knowledge about the target system.
Typically, the attacker only has access to the input and output of the model and relies on
techniques such as input manipulation, query optimization, and exploration to understand
the target model and craft adversarial samples based on the local surrogate model.

In our work, we focus only on white-box adversarial attacks for two reasons. First, a model’s
resilience to white-box attacks provides a more comprehensive evaluation of its robustness. If a
model can withstand white-box attacks, it is more likely to be robust against various other types
of attacks as well. Second, our preliminary experiment results show that the per-step detectors,
when trained according to a standard approach without self-evolution, are robust against black-box
adversarial attacks, such as Boundary [4] and HopSkipJump [6]. Table 2 shows that such black-box
attacks are unable to evade the per-step detectors even with large perturbation budgets, iteration
rounds, and query times. However, they are not robust against white-box adversarial attacks.

Table 2. Black-box Adversarial Evasion Attacks against Per-step Detectors

Input ¢ TterNum QueryNum Reconnanssance Detector | Infection Detector Action Detector
TP FN Recall (%) TP FN Recall(%) | TP FN Recall (%)
Clean - - - 3064 13 99.58 126 192 39.62% | 112 11 91.06
Boundary 1.0 500000 100000 3064 13 99.58 126 192 39.62% 112 11 91.06
HopSkipJump - 500000 100000 3064 13 99.58 126 192 39.62% | 112 11 91.06

3.3 LSTM-based Seq2Seq Model with Attention Mechanism

A Seq2Seq model consisting of two main components, an encoder and a decoder, is a deep learning
(DL) model commonly used for tasks involving sequence data, such as machine translation, text
summarization, and speech recognition [49]. In our work, we build both the encoder and decoder
structures of the Seq2Seq model on typically Long Short-Term Memory (LSTM) units [15] and refer
to it as an LSTM-based Seq2Seq model (see Figure 2). The two main components of the LSTM-based
Seq2Seq model are as follows:

e Encoder: In the Seq2Seq model, the unified goal of the encoder is to capture essential
information from the entire input (word) sequence and generate a representation. In the
LSTM-based Seq2Seq model, hy is the initial hidden state of the encoder. Each element of
the input sequence {z;}? , is fed into the LSTM cell one by one to generate encoder hidden
states {h;}? ,, and the final hidden state h, of the LSTM is used as the target representation.

e Decoder: In the LSTM-based Seq2Seq model, the decoder uses the representation h, generated
by the encoder as the initial decoder hidden state sy, and generates the output sequence
{yi}:_, step by step, with each step representing a time step. {s;}_, denotes the decoder’s
hidden states. During training, the decoder is fed with the ground truth output sequence up
to the current time step to predict the next element. However, during inference or testing,
the decoder uses its own predictions as input for the next time step. The decoder generates
an element at a time step until a predefined maximum length is reached.

However, Cho et al. [7] have shown that the performance of the model degrades as the length n
of the input sequence increases, which is called the bottleneck problem. The reason for this problem
is that information loss occurs in the representation due to its fixed size. Specifically, it often fails
to capture the interdependencies between elements that are far apart in a sequence.

To enhance the performance of the Seq2Seq model, an attention mechanism [2, 30] is often
incorporated between the encoder and decoder (see Figure 3). The motivation for the use of the
attention mechanism is to make the decoder focus on different parts of the input sequence according
to relevance while generating each element in the output sequence. To this end, the attention

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

8 Huang et al.

Encoder ' Output Sequence

: o Y1 Y2 Ve
A'[LSTM]L-[LSTM]ﬁ» LSTM]S—l-[LSTM]5—2» =L STM |
: Z Z2 Zn Yo Y1 Ye-1
Input Sequence Decoder

Encoder

Ae-1,1 At-12 At-1n-1 at—l,n% ;
3 0‘51,1 ‘1132 a1,n5—1 ali,n %]1 }:2 ft
o1 Qo2 @on-1 Fon | B | G c, [3
ﬂ'[LSTM th LSTM]&» LSTM]S—l-[LSTM |2
] 7 z 2y § Yo » Ye-1 §
Input Sequence Decoder ‘

Fig. 3. LSTM-based Seq2Seq Architecture with Attention

mechanism requires the decoder not only to refer to the current hidden state s of the decoder
but also to a context vector c at each time step, which is a weighted average of all hidden states
{hi}1, of the encoder. Then, the context vector ¢ and the hidden state vector s of the decoder are
concatenated and given as input to the LSTM cell. With the context vector, the decoder will focus
more on certain hidden states of the encoder related to the current state of the decoder.

For example, when the next element to be returned by the decoder is y, k € {1,2,...,t}, each
hidden state of the encoder h;, i € {1,2, ..., n}, is associated with an attention weight ay_ ;, which
reflects the relevance of the encoder hidden state h; to the current decoder state s;_;. Attention
weight is determined by the alignment score that quantifies the amount of attention. The most
widely used scoring function is the dot product, by which the alignment score is obtained by
multiplying the hidden states of the encoder with the state of the decoder. Every time the decoder
predicts an element in the output sequence, a set of attention weights is updated according to the
latest hidden state of the decoder to obtain a new context vector. Therefore, when the length of the
output sequence is t, ¢ context vectors will be calculated according to Equation (3).

ok = Z Cprihik = {1,2, ...t} 3)
i=1

4 ARCHITECTURE OF ARIOTEDEF

In this section, we introduce the design principles and the framework of ARIoTEDef. We first
describe the threat model faced by ARIoTEDef and its main properties, and then describe the
architectural components of ARIoTEDef.

4.1 Design Principles

4.1.1 Threat model. ARIoTEDef is designed to analyze network packets exchanged between the
protected network and the Internet. We assume that the ARIoTEDef is not compromised, therefore,
it does not manipulate the exchanged packets. We consider two main evasion attack models: the
black-box non-adversarial attack model and the white-box adversarial attack model.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 9

¢ Black-box Non-adversarial Attack Model: We assume that attacks are launched from
the Internet by using remote network access. That is, we assume that IoT devices are not
compromised when they are initially deployed in the network, and the attacker does not
have physical access to the IoT devices or direct access to the wireless network to which
these devices are connected. In this work, we refer to attack samples made based on this kind
of threat model as black-box non-adversarial attack samples or clean evasion samples.

e White-box Adversarial Attack Model: We assume the attacker has complete knowledge
of the architecture, algorithms, and parameters of the target model. These attacks exploit
vulnerabilities in DNN-based classifiers to construct adversarial evasion samples from the
clean evasion samples. In this work, we refer to attack samples made based on this kind of
threat model as white-box adversarial attack samples.

4.1.2 Main properties. To be strong against threats, ARIOTEDef is designed to adhere to the
following properties:

o Network-based: It works with network packets and does not require any change to IoT
devices, avoiding any computational burden on IoT devices and enabling instant deployment.

e Anomaly-based: It is capable of detecting unknown patterns and is also appropriate for the
simple communication behaviors of IoT devices.

e Cyber Kill chain-based: It understands multi-step attacks based on the cyber kill chain and
deploys classifiers specialized for these steps.

o Infection-identifying: When a later-stage action event of a multi-step attack is detected, it
analyzes past events to identify infection events.

e Self-evolution: The infection detector is retrained with identified infection events.

e Adversarial Robust: The evolved infection detector is robust to adversarial evasion attacks
using adversarial samples.

4.2 System Architecture

ARIOTEDef consists of four main components (see Figure 1): Window Manager, Per-step Detectors,
Sequence Analyzer, and Detector Updater. The detailed workflow of each module is as follows.

4.2.1 Window Manager (packets — window). ARIoTEDef works on a flow-based window, where a
network flow is defined as a 5-tuple consisting of the used protocol, source/destination IP address,
and source/destination port. The window manager is responsible for collecting packets for each flow
and sliding the window according to two parameters: window output period and window length.
At each window output period, the window manager outputs a window vector. The elements of
this window vector correspond to the 84 flow features considered by the network traffic analyzer
CICFlowMeter [27]. The value of each feature in a window vector is calculated from all packets
within the window length.

For example, suppose that the window output period is 2 and the window length is 5. When
outputting a window at time ¢ = 5, the window vector consists of flow feature values computed
from all packets captured between t = 0 and ¢ = 5. Since the window output period is 2, the next
window vector will be output at t = 7, where the feature values are computed from all packets
captured between t =2 and t = 7.

4.2.2 Per-step Detectors (window — event). The main purpose of per-step detectors is to map an
arbitrary window to one or more steps in a cyber kill chain. That is, the packets within a window may
only correspond to one step in a multi-step attack, or may correspond to multiple steps at the same
time. In this work, we model a multi-step attack as three steps in a cyber kill chain: reconnaissance,
infection, and action. To this end, we design three binary classifiers, called reconnaissance detector,

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

10 Huang et al.

infection detector, and action detector, respectively, as per-step detectors in ARIOTEDef to detect
whether there is a corresponding anomaly in an arbitrary window. Once a window vector is given
to ARIOTEDef, each per-step detector takes it as input and determines whether it contains any
anomalous patterns for the corresponding step. If so, ARIoTEDef marks the input window vector
with the name of the corresponding step.

For example, we call a given window a reconnaissance window if the reconnaissance detector
detects an anomaly from the window vector. If the infection detector also detects an anomaly from
this window vector, we call it both a reconnaissance window and an infection window. This process
provides a precedence relation between windows according to the kill chain steps.

The rationale behind this modular design is as follows. First, the detectors specialized in different
steps are more effective as they have higher accuracy than a single monolithic detector that
detects all the events of the steps altogether [46]. Second, ARIoTEDef mainly focuses on preventing
infections by identifying infection patterns and improving the infection classifier. The modular
approach allows for an efficient evolution of the system as whenever an anomaly at a step is detected,
ARIOTEDef can upgrade the infection detector individually without affecting the other detectors.
Third, such modular design helps with explainability for attacks. With the detection results, our
modular architecture can provide information about the attack step (e.g. Reconnaissance, Infection,
or Action) that the adversary is performing, which is helpful to understand the attack in detail
and possibly contain/block the attack. Finally, in terms of security, ARIoTEDef is more resilient to
attempts aimed at evading detection as the attack needs to avoid detection by all detectors.

Since there may be FP or FN in the output of per-step detectors, we let each per-step detector
not only output the binary classification result (benign/malicious) but also output the confidence
score, that is, the score level of the detection result, to prompt FP and FN. That is, each per-step
detector outputs a score for the malicious class and a score for the benign class. ARIoTEDef takes the
product of the benign scores output by the three per-step detectors as the global confidence score
of the benign category, and then applies the softmax function to normalize the confidence scores
of the four categories of reconnaissance, infection, action, and benign to produce a probability
distribution. We call an output of per-step detectors module an event that contains a window, three
labels (indicating whether the window belongs to each per step, respectively), and four probabilities
(normalized confidence scores for the four categories).

4.2.3 Sequence Analyzer (sequence of events — identified infection events). To correct FP and FN of
the infection detector, we design an event sequence analyzer to identify infection events that lead
to detected action events. Our proposed infection identification algorithm is based on a Seq2Seq
translation model, which is implemented based on the LSTM cells and an attention mechanism. This
algorithm takes a sequence of past events with a certain length as input. Each event is represented
as a four-dimensional probability vector consisting of four confidence scores assigned by per-step
detectors. Then, the identification algorithm analyzes the input event sequence according to the
entire context and predicts a unique step in the kill chain for each event, resulting in an output
step sequence with the same length as the input. Finally, ARIoTEDef selects the steps predicted to
be infection from the output step sequence and returns the corresponding infection events.

4.2.4 Detector Updater (identified infection events — updated infection detector). The detector
updater is responsible for updating the infection detector using the infection events tagged by the
sequence analyzer. This module first assigns infection labels to infection windows in the identified
infection events. Then, according to the adopted self-evolution strategy, it uses these newly prepared
infection window samples and original training samples for the infection detector as the training set
to retrain the binary classifier of the infection detector. In addition, the self-evolution of Infection
detectors also brings sustainable growth in adversarial robustness to the infection detector. On the

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 11

one hand, benefit from the introduction of the attention mechanism, the sequence analyzer can
combine the long context information in the event sequence to focus on the non-sensitive features
of the input sample, thereby identifying more complex malicious traffic patterns that are difficult
to be identified by the Infection detector, such as adversarial evasion samples. As the infection
detector is updated with relabeled adversarial evasion samples, the adversarial robustness of the
model is also enhanced in the process of forcing the detector to learn small changes in the input
space. On the other hand, since the adversarial samples used by the evolution of the Infection
detector come from the attacker rather than actively constructed by the defender, it avoids the
high time overhead required for adversarial sample generation and enhances the adaptability to
constantly updated adversarial attack methods.

5 FORMALIZATION OF ARIOTEDEF

In this section, we describe in detail the algorithms of ARIoTEDef. We first formally define the
problem to be solved and then present the solutions we propose through a probability-based
embedding algorithm and an attention-based translation algorithm. Finally, we discuss the self-
evolution strategy for the infection detector.

5.1 Problem Definitions

In the following definitions, we use the notation a.b to indicate an attribute b of a.

Definition 1 (Tag). Tag refers to the label assigned to the event by the sequence analyzer. We
denote the collection of tags that can label events by the set £ = {B, R, I, A}, where B, R, I, A denote
Benign, Reconnaissance, Infection, and Action, respectively.

Definition 2 (Event). An event e = (w, [, p, t) in the event set & is a tuple with four attributes:

e e.w is a vector representing the window in the event e.

o e.l = (r,i,a) is a tuple with three attributes indicating the label of the window e.w. Each
attribute indicates the result of the window e.w being predicted by the per-step detector,
and the attribute values e.l.r, e.l.i,e.l.a € {0, 1}. Taking e.l.r as an example, when e.l.r = 0,
it means that e.w is predicted as benign by the reconnaissance detector; when e.l.r = 1, it
means that e.w is predicted as malicious by the reconnaissance detector.

o e.p = (b,r,i,a) is a tuple with four attributes representing the confidence scores of the
windows e.w on the four categories. The attribute values e.p.b, e.p.r, e.p.i, e.p.a denote the
probability given by the per-step detector that the window e.w belongs to the benign, recon-
naissance, infection, and action classes, respectively. Attribute values e.p.b, e.p.r, e.p.i,e.p.a €
[0,1] and e.p.b+e.p.r+ep.i+ep.a=1.

e e.t represents the tag assigned to the event e by the infection identification algorithm, where
ete L={BRILA}.

Our goal is to identify infection events in the early stages of the cyber kill chain by backtracking
past events from anomalies in known action steps. To this end, we model the backtracking process
as an event tagging problem, described as follows:

Problem 1 (Event Tagging Problem). Let e = {ej, e, ---,e,} € & be an input event sequence
where £ is a set of all event sequences over the event set & and lety = {y;,ys,--- ,y,} € L" be
an output tag sequence where L* is a set of all tag sequences over the tag set L. Our goal is to
design a function g : & — L* that takes an input sequence e and outputs y.

The main challenge for solving this problem is the long-term dependencies between events.
Specifically, infection events always precede action events, but the time interval between these two

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

12 Huang et al.

events can be long. For example, in the Mirai botnet attacks [1], the device, to be used as a bot, is
first infected by the attacker using a dictionary attack. Then, the attacker can launch a UDP flood
attack towards the victim a long time after the infection event. To this end, ARIoOTEDef should be
able to correlate distant events. For example, after detecting a UDP flood pattern in the action step,
a dictionary attack pattern in the infection step can be identified by backtracking past events.

To address this issue, we use language translation techniques in natural language processing
(NLP), since even words that appear to be far apart can have significant relationships in natural
language. Many techniques have been proposed to capture such dependency [5]. Our idea is that
if we can model events as words and event sequences as sentences in the language, then we can
address our problem by using language translation techniques. To this end, we split the above
Problem 1 into two problems to solve one by one.

(1) Model the event as a representation vector that can reflect the correlation information
between events, just like the representation vector of words in NLP.

(2) Translate the event sequence with a long-distance relationship between events into an equal-
length tag sequence, that is, predict a category label for each event in the input sequence.

We formalize the above two subproblems as follows:

Subproblem 1 (Embedding Problem). Let e = {ej, e5, -+ ,e,} € & be an input event sequence
of length n and let z = {z1,25,- -+ ,z,} € Z* be an input word sequence, where Z* is a set of
all word sequences over an input word set Z. Our goal is to define an input word set Z and an
embedding function e : & — Z*, which takes e as input and outputs z.

Subproblem 2 (Translation Problem). Let z = {21, 25, -+ ,2z,} € Z* be an input word sequence
and lety = {y1,y2, - - ,yn} € L* be an output tag sequence. Our goal is to design a translation
function t : Z* — L* that takes z as an input and outputs y, thus labeling all the embedded
windows represented as words in the word sequence z.

5.2 Solution
Our solution to the above problems consists of the following three steps:

e Probability Distribution Assignment: Each event is assigned a probability distribution
e.p indicating the confidence that the window e.w belongs to each class.

e Probability-based Embedding: Encodes the probability distribution e.p of an event e into
a word in the language.

e Attention-based Translation: Translate a sequence of embedding events represented by
words into corresponding tags, with each word corresponding to only one tag.

5.2.1 Probability Distribution Assignment. The per-step detectors in ARIoTEDef are responsible
for assigning a probability distribution to each event. Recall that the per-step detectors detect
reconnaissance, infection, and action patterns in a given window. Each detector is a binary classifier
for benign and malicious events, trained with window samples from the corresponding step. For
instance, the classifier of the infection detector is trained according to a standard approach on an
infection window dataset, which consists of normal window samples and abnormal window samples
from telnet dictionary attacks, Log4j attacks, or other attacks aimed at infecting IoT devices. The
classifier structure of each per-step detector is customizable. However, Note that the performance
of the classification algorithm of the per-step detector will affect the performance of the ARIOTEDef,
because the infection identification algorithm in the sequence analysis module is run over the
output of the per-step detectors. Our results show that LSTM-based per-step detectors perform
best for classification (See Subsection 6.4).

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 13

Each per-step detector assesses the probability of the window belonging to its corresponding
step. For instance, the reconnaissance detector might assign a 0.68 probability to the window being
reconnaissance, while the infection detector could assign a 0.53 probability to the window indicating
infection. We convert the probabilities into one probability distribution using the softmax function
and finally output the distribution as an event. For example, an event might carry a probability
distribution of (0.46,0.31,0.11, 0.12), signifying that the probabilities of the corresponding window
being benign, reconnaissance, infection, and action are 0.46, 0.31, 0.11, and 0.12, respectively.

Algorithm 1 Probability-based Embedding e

Input: Sequence of events s = (e1,---,e,) and d
Output: Sequence of words (Sentence) z = (21, -, zy)
Initialize: z[:] = []
1: fork=1,2,...,ndo
2: sort ex.p.b, ex.p.r, ex.p.i, ex.p.a by the decimal part to be rounded off in descending order

3 if more than two decimal parts are larger than 5 then
4 Round down the last one or two probabilities to ensure sum = 1
5: Round off the rest of the probabilities
6: else if more than two decimal parts are smaller than 5 then
7: Round up the first one or two probabilities to ensure sum = 1
8: Round off the rest of the probabilities
9: else
10: Round off the probabilities
11: end if
12: > r(a,b): the result of rounding up/down/off a to b of decimal places
13: zr = (r(ex.p.b,d), r(er.p.r,d), r(ex.p.i,d), r(ex.p.a,d))
14: Add a word zj to Sequence z
15: end for

Algorithm 2 Attention-based Translation ¢

Input: Sequence s; = (ey, - - , e,), Decimal Place d
Output: Sequence s,
Initialize: s,[:] =0
1: s, = ProbabilityBasedEmbedding(s;, d)
Tistm = LSTM(se)
Yattention = Attention(rigm)
rep = Feedforward(rassention)
rsm = Softmax(ryyr)
> Tsm = (Pby> Pri> Pivs Par)s > (Pbys Prs Pis Pay,)
fork=1,2,....,ndo
ex.t = argmax((Ppy. Pris Pigs Pay.))
Add e to sequence s,
end for

R A AN

_
<

5.2.2 Probability-based Embedding. To address Subproblem 1, we design a novel probability-based
embedding algorithm, as shown in Algorithm 1.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

14 Huang et al.

We represent each event e in the input event sequence as a word z in the input word sequence,
which is a vector of four probabilities summing to 1. One issue is that the above input word set
is infinite, which would be inappropriate for a language translation model based on finite input
word sets. Thus, we change the input set to be finite. To this end, we introduce a hyper-parameter
d, which is the number of decimal places to round off the probabilities. Given d € N, let £ be
{plp = round(q,d),0 < q < 1}, where round(aq, b) is a function that rounds off a to b of decimal
places. With d, the input set is changed to Z = {(b,r,i,a)|b,r,i,a € P and b+r+i+a = 1}. However,
rounding off does not guarantee that the sum of the rounded probabilities is always one. To avoid
the case that the sum is not one, we first sort the probabilities by the decimal part to be rounded off.
Then, we round up the first one or two probabilities or down the last one or two to ensure the sum
of the resulting probabilities is one. For example, (0.466---,0.412---,0.031---,0.087 - - -) became
(0.5,0.4,0.0,0.1) when d = 1 (see the bold-face numbers in Figure 1). Note that d determines the
number of input words in the word set.

5.2.3 Attention-based Translation. To address Subproblem 2, we apply the attention mechanism to
the LSTM-based sequence analyzer to label the events in the input event sequence one by one. The
flow of infection event identification is as follows (see Algorithm 2):

o Input: The input sequence consists of a series of events, each of which has a probability

distribution assigned by the per-step detectors.

Embedding: Events in the input sequence are converted into words one by one, and each

word consists of four probabilities.

e LSTM-based Encoder: After embedding the event sequence as a word sequence, the word
sequence is input to the LSTM-based encoder, which outputs a hidden representation that
encodes the information of the entire input sequence.

e Attention: After generating the final hidden state of the encoder, all hidden states of the
LSTM-based encoder and the current hidden state of the decoder are fed into an attention
layer. The attention layer first calculates a set of attention weights, reflecting the relevance
of each hidden state of the encoder to the next output prediction of the decoder. Then, all
hidden states of the encoder are weighted and averaged according to the attention weights,
and the result is output as a context vector.

e LSTM-based Decoder: The LSTM layer of the decoder takes the current decoder hidden

state, the context vector, and the previous decode word as inputs, and outputs a decoded

word along with the updated decoder hidden state. When the decoder prepares to output a

translated word at each time step, it needs to recompute its associated context vector until

the output sequence reaches the upper limit.

Feedforward & Softmax: we add a feedforward layer and a softmax layer. They output four

probabilities for each input word. Each probability represents the degree to which an input

word is translated into an output word.

Output: Finally, each input word representing an embedded event in the input sequence is

translated into the output word representing the tag category with the highest probability.

With the attention mechanism, ARIoTEDef analyzes a given sequence in the context between
events. As words of the same form may have different meanings in the context of the sentence,
events with the same distribution may also belong to different steps in the context of the sequence.
For example, some events with the same distribution may belong to Benign or Infection, depending
on whether an action event is in the sequence or not. In the attention mechanism, the attention
weights are evaluated concerning different steps and positions in sequences. Thus, it helps to
distinguish the differences between the events that have the same distribution but belong to
different steps and identify infection events related to an action event in the sequence.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 15

5.3 Self-Evolution Strategies

The self-evolution strategies are used to guide the Detector Updater to retrain the binary classifier
of the infection detector with the events identified by the Sequence Analyzer.

Definition 3 (Evolution Set:). Let A be a set of events tagged as infection by the infection
detector. Let B be a set of events tagged as infection by both the infection detector and the
LSTM-based translation model with the attention mechanism. Let C be a set of events
tagged as infection by the infection detector but tagged as benign by the LSTM-based
translation model with the attention mechanism. In general, 8 and C are two subsets of
A that satisfy A = B|J C. We label all events in set B as infection and all events in set C as
benign.

We consider three different self-evolution strategies. Let D;,¢_sr4 be the original training set for
training the infection detector.

e Strategy 1: The binary classifier of the infection detector is retrained over a retraining set,
consisting of windows in all the events in 8, windows in all the events in C, and D, r_4r4. For
example, suppose there are five events ey, e, e3, 4, €5 € A (i.e. e;.1.i = 1 for i = {1,2,3,4,5})
and the attention-based infection identification algorithm provides the information that three
events e, e, e4 € B C A are infection events (i.e. e;.t = ey.t = e4.t = I). Then, ARIoTEDef
updates the infection detector with e;.w, e;.w, e4.w labeled as Infection, es.w, es.w labeled as
Benign, and Dinr_trq.

e Strategy 2: This strategy is similar to Strategy 1 except that it only uses windows in all the
events in 8 and D, srq, Which adds the information about the TP to the updated model. In
the above example, e;.w, e;.w, e4.w labeled as Infection and D;,¢_s,4 are used to retrain the
infection detector.

e Strategy 3: This strategy is similar to Strategy 1 except that it only uses windows in all the
events in C and D474, Wwhich aims to reduce the FP of the updated model. In the above
example, e3.w, es.w labeled as Benign and D;,¢_;,4 are used to retrain the infection detector.

The main purpose of this definition is not only to strengthen the knowledge of infection detectors
on known infection patterns but also to identify benign events that are misclassified as infection by
the infection detector, so that they can be used to reduce the FP of the evolved infection detector.

6 EXPERIMENTS IN THE REGULAR SETTING

This section presents the experimental analysis of ARIOTEDef on the clean dataset without DL-
based adversarial evasion samples. We implement a proof-of-concept prototype and build a testbed
for evaluation using a dataset related to the Mirai botnet [1] and the Log4j attack [36].

6.1 Experimental Setup
6.1.1 Implementation. We use the pcapy library [9] to capture packets and the Keras library [23]
to implement neural networks and other machine learning-related functions.

6.1.2 Model. The LSTM layer consists of 100 units for our attention-based neural network with 0.5
for the dropout rate and 0.2 for the recurrent dropout rate. The subsequent attention layer uses a
dot product as a scoring function. Finally, the feedforward layer consists of 64 units. We use sparse
categorical cross entropy as the loss function.

6.1.3 Dataset. We generate datasets considering the following two scenarios.

e Mirai botnet campaign [1]: It includes the telnet dictionary attack as an infection activity.
We use a publicly available IoT intrusion dataset from academia [22]. It contains captured

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

16 Huang et al.

packets from the real world and consists of diverse types of packets including benign packets,
port scanning packets, telnet dictionary attack packets, and flooding packets, as separate
files. We extract packets from the files and combine them into one dataset. We label port
scanning packets to reconnaissance, the telnet dictionary attack packets to infection, and the
flooding packets to action. We add benign telnet login packets to degrade the performance of
the infection detector, because benign telnet login packets are similar to the telnet dictionary
attack packets. By adding the benign telnet login packets, the FP of the infection detector may
increase. The detail of making a different Mirai botnet dataset based on [22] and implemented
script is described in Subsection 6.2.

o Log4j attack [36]: It includes the Log4;j attack as an adversary’s infection activity. We build
our testbed based on mininet [26], run multi-step attacks, and capture the packets. The
resulting dataset includes the port scanning packets as reconnaissance, the Log4j attack
packets as infection, and the flooding packets as action. The dataset also contains benign
HTTP POST packets from which the Log4Shell attack packets are difficult to tell.

6.1.4 Testbed. We perform our experiments on one machine with an i7-4700 CPU @ 3.60GHz 8
core processors and 16GB RAM. To evaluate the performance of ARIoTEDef with the practical
scenarios, we replay the packets from the above dataset with Tcpreplay [24]. The generated packets
are captured by ARIoTEDef.

6.1.5 Experiments. We measure the performance for the following three cases for a given test set.
We report averaged results of 30 trials per scenario.

e Baseline: We see how many infection events can be correctly detected by the infection
detector learned only with the training set.

e Attention: We evaluate how well our attention-based infection identification algorithm
works over a sequence of events.

e Update: We measure the performance of the infection detector evolved with the identified
infection events on a different test set.

6.2 Dataset Generation

In our experiment, we use the dataset from [22] as discussed in Subsection 6.1.3. It consists of
several files that capture packets related to the Mirai botnet. In detail, it includes the ARP spoofing
packets, host discovery packets, or other flooding packets. Among them, we use the following
packets in our experiments:

e Benign: These packets are normal packets exchanged between benign entities.

e Port scanning: These packets are simple SYN packets to scan open ports at a targeted device.
These packets are labeled as reconnaissance.

e Brute force: These packets are used to perform dictionary attacks with predefined credentials
to infiltrate a target device. We label these packets as infections.

¢ Flooding: These packets are SYN/ACK/HTTP/UDP flooding packets to cause a DoS condition
on a victim. These packets are tagged as action.

Due to the limited number of datasets, we manipulate the existing dataset to create new diverse
pcap files, which contain different attack patterns (e.g., types, order, and timing). For example, we
want to generate a dataset with a specified number of infection packets at a certain time and several
UDP flooding packets for a particular time. To this end, we implement a data manipulation script,
which works as follows:

(1) A new scenario file is created. The starting time of the scenario is 0.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 17

(2) A list of files that contain interesting packets is specified with the starting time and the
duration. In detail, the list consists of several pairs (<file name> <starting time> <duration>),
which means that the packets are randomly extracted from <file name> and inserted into the
new scenario file at time <starting time> for <duration>. For example, bruteforce.pcap, 10, 2
means that the packets from bruteforce.pcap are inserted into the new scenario at time 10
for 2 seconds.

(3) All the packets are extracted from the files in the list and put into the new scenario file
appropriately. We allow overlaps between different packets.

(4) Finally, the IP addresses of the packets are modified to the loopback addresses.

6.3 Impact of Probability-based Embedding

We assess the impact of our probability-based embedding on the performance of our attention-based
translation by varying the value of the hyper-parameter d (see Figure 4), which is the number of
decimal places to round off the probabilities.

F1 Score
© o =
o w o

I Baseline

[Attention
d=0 d=1 d=2 d=5 d=10 d=15 p— .
(4) (286) (1.77e+5) (1.67e+14)(1.67e+26) (1.67e+41) neremen

d (# of words)
Fig. 4. Impact of The Probability-based Embedding

Overall, the F1-score increases from the Baseline when Attention is used. Furthermore, we see
that Attention works best with d = 1. Note that the larger the value of d is, the higher the number
of elements in the set. For d > 1, the number of elements is higher than 10°, which we believe is too
large for mapping to only four variables in the output word set. The worst increment is at d = 0,
where the one-hot encoding is used. The result shows that the one-hot encoding is ineffective for
Attention as it cannot capture dependency between words. Hereafter, we fix d = 1 in the other
experiments.

6.4 Impact of Classifiers of Per-step Detectors

As Attention relies on probabilities assigned by per-step detectors (see Figure 1), we carry out some
experiments to understand the impact of different types of classifiers for the per-step detectors on
the performance of Attention. As classifiers, we use Logistic regression, Decision tree, Random
forest, Feedforward neural network, and LSTM. Note that LSTM here is the classifier architecture
of the infection detector, not the encoder layer before the attention layer in Attention. We evaluate
each classifier with and without the Attention and calculate the F1 score.

We find that the neural networks are compatible with Attention (see Figure 5). The increments
of the F1-score for both neural network algorithms are 0.29 (Feedforward) and 0.48 (LSTM), respec-
tively, while for other algorithms is less than 0.08. Notably, LSTM is the one classifier that works
best with Attention. Compared with other algorithms, LSTM is the only algorithm that considers
the context of windows, which explains the result. After breaking down the result of the neural
networks, we find that Attention contributes to increasing precision while maintaining recall. This
result shows that the attention mechanism assigns higher weights to features that are useful for
finding false positive results in the detectors.

The reason why non-neural network algorithms show worse performance is because of their
assumption. Logistic regression shows poor performance due to its linear boundary assumption.
The decision tree shows high precision with low recall, which means it is over-fitted. Furthermore,

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

18 Huang et al.

o 1.0

8

O

» 0.5 Bl Baseline
i

= 0.0 Lo 4 0 Attention

Logistic Decision Random Feed LSTM
Regression Tree Forest Forward

Fig. 5. Impact of Classifiers of Per-step Detectors

the difference in F1-score between the decision tree with and without Attention is only 0.01. The
reason is that the decision tree does not produce a probability and thus is not compatible with our
embedding scheme. Also, the decision tree has high variance and is very sensitive to small changes
in the input, which makes it highly deterministic. It results in loss of information when encoding
different steps of the attack. Although the problem is alleviated by using the random forest, we find
that the random forest also does not perform well with Attention for similar reasons. Therefore,
we use LSTM for our classifiers of the per-step detectors hereafter.

6.5 Comparison with Other Identification Algorithms

We compare Attention with other traditional identification algorithms for sequences. We consider
the following three algorithms:
¢ Highest probability. Highest probability tags a window to the step with the highest proba-
bility assigned by the per-step detectors. If the probabilities are identical for a window, the
algorithm labels the window in the order of Benign, Action, Reconnaissance, and Infection.
The order is based on the number of samples in our dataset.
e Viterbi. Viterbi [11] is based on a hidden Markov model and estimates a sequence of hidden
states from an observed sequence with memory-less noise.
¢ Episode tree. An episode tree is a collection of window sequences. Based on the training
set, we build an episode tree using the tree generation algorithm by Mannila et al. [32]. The
episode tree identifies infection windows if a given window sequence matches a branch of
the episode tree, which contains infection windows.
The results (see Figure 6) show that the attention-based algorithm outperforms the other algo-
rithms. The F1-score of the attention-based algorithm is 0.85. The performance of the episode tree
(0.46) and Viterbi (0.20) is even worse than the highest probability (0.65).

o 1.0

8 B Precision

& 0.5 =3 Recall

m 0.0 I F1 Score
" Highest Probability Attention Episode-Tree Viterbi

Fig. 6. Comparison with Other Identification Algorithms

The episode tree is a simple pattern-matching algorithm; thus, it depends on how many patterns
are captured from the training set. Therefore, the episode tree can be easily over-fitted, which
accounts for high precision and low recall of its result. Viterbi shows the worst performance due to
its memory-less assumption which makes the algorithm unable to capture long-term dependencies.

6.6 Impact of Self-Evolution Strategies

We carry out an experiment to assess the impact of the three strategies discussed in Subsection 5.3.
We compare the performance of the baseline with that of the infection detector updated according
to the three strategies. Strategy 1 is the strategy that uses identified infection events, identified
benign events, and the original training set for retraining. Strategy 2 is the strategy that only uses

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 19

identified infection events and the original training set for retraining. Strategy 3 is the strategy
that only uses identified benign events and the original training set for retraining. We use those
three strategies to evolve the infection detector for one round, that is to say, the infection detector
was only updated once.

The results (see Figure 7) show that all updated infection detectors outperform the baselines in
terms of precision and F1, regardless of the strategy used. Compared with other strategies, Strategy
2 works best (highest F1-score of 0.87) with the highest precision (0.82). Strategy 1 has an F1-score
of 0.82 and a precision of 0.77, and Strategy 3 has an F1-score of 0.72 and a precision of 0.64. We
conclude that the self-evolution strategy affects the performance of the infection detector. The
results show that many benign samples are classified as malicious under Strategy 1 and Strategy 3
(more FP), resulting in worse performance on precision and F1 score compared to Strategy 2.

1.0
8 I Precision
% 0.5 3 Recall
>

0.0 I F1 Score

Baseline Strategy 1 Strategy 2 Strategy 3
Fig. 7. Impact of Self-Evolution Strategies

6.7 Comparison with Other Attention-based NIDSes

We compare our NIDS via the LSTM-based Seq2Seq model with attention mechanism with existing
attention-based NIDSes concerning two aspects. First, we assess whether the performance of LSTM
after being evolved is comparable to the performance of those NIDSes. Second, we assess whether
our attention-based identification is also beneficial to them. In our analysis, the following two
approaches are considered:

e Hierarchical Attention Model (HAM). HAM [29] employs two attention layers: the feature-
based attention layer and the slice-based attention layer. The former weighs the features and
the latter calculates an attention score for a time window considering a specific number of
previous windows. Finally, the NIDS predicts the next window with the neural network.

e SAAE-DNN. SAAE-DNN [50] is based on a stacked autoencoder with the attention mecha-
nism. It consists of two autoencoders. In between an encoder layer and a latent layer of each
autoencoder, an attention layer is inserted. The latent nodes of the second autoencoder are
connected to the four-layer neural network, which finally outputs the classification result.

In the experiments, we use two test sets (referred to as set; and set;) with different networking
patterns. First, we evaluate the F1-score of LSTM, HAM, and SAAE-DNN on both set; and set,. Then,
we apply our self-evolution Strategy 2 to update the models based on the result on set;. We refer
to the evolved models as Updated LSTM, Updated HAM, and Updated SAAE-DNN, respectively.
Finally, we measure the F1-score of the updated models on set;. We compare the results of LSTM,
HAM, SAAE-DNN, and their updated models on set; (see Figure 8).

Il Baseline
3 Update

F1-Score
o
()]

I
=

LSTM HAM SAAE-DNN
Fig. 8. Comparison with Other Attention-based NIDSes

Our conclusions are as follows. First, our Updated LSTM outperforms HAM and SAAE-DNN.
The F1-score of the original LSTM (standard trained infection detector) is only 0.14, which is lower

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

20 Huang et al.

than the scores of HAM (0.19) and SAAE-DNN (0.77). However, the F1-score of LSTM becomes the
highest (0.92) after being evolved. These results show that our self-evolution strategy can achieve
a classifier performance comparable to the one of existing NIDSes. Second, existing NIDSes can
benefit from our approach. After being evolved, the F1-scores of HAM and SAAE-DNN increases
from 0.19 to 0.42 and from 0.77 to 0.86 respectively.

7 ENHANCED SELF-EVOLUTION STRATEGIES

Although the self-evolution strategy based on Definition 3 is effective in reducing the FP of the
infection detector, it does not take into account those real malicious events that may be misclassified
as benign by the infection detector. Especially when there are adversarial evasion attacks against
DNN-based detectors, both these adversarial infection windows and non-adversarial infection
windows that are easy to escape detection by infection detectors also need to be included in the
relabeling range of our sequence analyzer. To this end, we further redefine the evolution set and
improve the previous self-evolution strategies.

Definition 4 (Enhanced Evolution Set). The definitions of set A and C are consistent with
Definition 3, except that set B is defined here as a set of events tagged as infection by the LSTM-
based translation model with the attention mechanism. As a result, set C is the only subset
of A. We label all events in set 8 as infection and all events in set C as benign.

Compared with the definition of the set 8 in Definition 3, in the Definition 4, the set 8 not only
contains samples that are predicted as infection by both the sequence analyzer and the infection
detector at the same time, but also contains samples that are only predicted as infection by the
sequence analyzer. Since the definition of set 8 only affects strategy 1 and strategy 2, we describe
them under the new definition as follows. Let Dj,f_r be the original windows training set for
training the infection detector.

e Strategy 1: The binary classifier of the infection detector is retrained over a retraining set,
consisting of windows in all the events in 8, windows in all the events in C, and Dy, r_4r4. For
example, suppose there are five events ey, e, e3, €4, €5 € A (i.e. e;.1.i = 1 for i = {1,2,3,4,5})
and the attention-based infection identification algorithm provides the information that five
events ey, ey, e4, €6, €7 € B are infection events (i.e. 1.t = e,.t = e4.t = €.t = e7.t = I). Then,
ARIOTEDef updates the infection detector with e;.w, e2.w, e4.w, €s.w, e7.w labeled as Infection,
e3.w, es.w labeled as Benign, and Djnf_trq.

Strategy 2: This strategy is similar to Strategy 1 except that it only uses windows in all the
events in 8 and D, srq, Which adds the information about the TP to the updated model. In
the above example, e;.w, e2.w, e4.w, es.w, e;.w labeled as Infection and D;,¢_4,4 are used to
retrain the infection detector.

The main purpose of the new definition is not only to identify actual benign events but also to
identify actual malicious events that are misclassified as benign by the infection detector, so that they
can be used to reduce the FN of the infection detector after evolving. Also, those adversarial evasion
samples that are easily misclassified as benign by the infection detector will also be re-labeled and
used to retrain the infection detector under the enhanced self-evolution strategy.

Due to the utilization of the attention mechanism, the event sequence analyzer based on the
sequence-to-sequence translation model can track the actual infection event by combining the
reconnaissance event and action event that occurred before and after the infection event, so it
has sharper identification capabilities than the per-step infection detector on complex adversarial
infection behaviors. Therefore, evolving the infection detector using the prediction results of the
sequence analyzer as supervisory information can improve its performance in identifying both
conventional (non-adversarial) and ML-based adversarial infection behaviors.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 21

8 EXPERIMENTS IN THE ADVERSARIAL SETTING

This section provides the experimental analysis on clean datasets and adversarial datasets consisting
of DL-based adversarial evasion samples.

8.1 Experimental Setup

We maintain the same model setting as that in Section 6. However, updates have been made in
terms of the testbed, adversarial attack dataset, and evaluation content.

8.1.1 Testbed. We conducted the experiments on an NVIDIA GeForce P8 GPU and CUDA V12.0.
We implemented the adversarial evasion attacks using the Adversarial Robustness Toolbox [40].

8.1.2 Dataset. We use the reconnaissance dataset, infection dataset, and action dataset generated
based on the Mirai dataset [1] with the method described in Section 6. Then, we use a Standard
Scaler normalization function to scale the feature values of each window sample in the dataset
to a normal distribution with a mean of 0 and a standard deviation of 1. Information about the
normalized dataset is shown in Table 3. The value range (MinVal, MaxVal) of the normalized input
samples will be passed to the adversarial sample generation algorithm as a parameter.

Table 3. Normalized Dataset

Windows Dataset Training Set Test Set

Total BenNum MalNum | MinVal MaxVal | Total BenNum MalNum | MinVal MaxVal
Reconnaissance 14410 7205 7205 -2.44 96.18 4233 1156 3077 -3.30 21.12
Infection 19818 9909 9909 -2.37 140.73 | 4233 3915 318 -3.30 21.12
Action 19152 9576 9576 -3.04 138.32 | 4233 4110 123 -3.30 21.12

8.1.3 Adversarial Evasion Samples Generation. To evaluate the robustness of ARIoTEDef against
white-box attacks (see Subsection 3.2), we consider the following two well-known adversarial
example generation algorithms:
o FGSM (Fast Gradient Sign Method): FGSM [13] is a one-step adversarial attack that
perturbs input by adding perturbation based on the sign of the gradients of the loss function
w.r.t the input. However, FGSM may produce less effective perturbations in complex DNNs.
e PGD (Projected Gradient Descent): PGD [31] is an iterative version of FGSM. It applies
FGSM multiple times with small per-step budget sizes and then projects the perturbations
back to a predefined € ball to ensure that the perturbations remain within a reasonable range.
PGD is effective against a broader range of models.

We input the clean samples one by one in the original dataset to the adversarial example
generation algorithm to obtain corresponding adversarial samples. According to the terminology
used in the literature, the collection of clean samples is referred to as clean dataset, and the
collection of adversarial samples is referred to as adversarial dataset. Thus, we refer to the original
infection test set shown in Table 3 as the clean infection test set, and the set of adversarial evasion
samples generated from the infection samples in the clean infection test set as the adversarial
infection test set. Note that the clean infection test set contains clean benign and clean infection
samples, while the adversarial infection test set only contains adversarial infection samples. When
generating adversarial samples, we need to set the following budget parameters:

o Perturbation budget e: This parameter determines the maximum allowable adversarial
perturbation on the clean sample x. The value range of (¢ + x) is (MinVal, MaxVal).

e Step size €;r: This parameter determines the per-step maximum allowable perturbation.

e Maximum number of iterations n;.: This parameter determines the maximum number
of iterations a clean sample is allowed to be perturbed when making an adversarial sample.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

22 Huang et al.

8.2 Impact of Budget Settings of Adversarial Evasion Attacks

We first train the reconnaissance detector, infection detector, and action detector using the clean
training sets. After training for 40 epochs with a batch size of 32, we obtain a baseline reconnaissance
detector with a clean accuracy (accuracy on the clean test set) of 96.48%, a baseline infection
detector with a clean accuracy of 94.80%, and a baseline action detector with a clean accuracy
of 97.73%. Then, we conduct the robustness evaluation experiments on two early-stage baseline
detectors, a reconnaissance detector, and an infection detector, using the white-box FGSM and
PGD attacks. We employ optimization methods for untargeted attacks and targeted attacks (see
Subsection 3.2) to construct adversarial reconnaissance samples and adversarial infection samples,
respectively. Also, we explore different perturbation budget settings.

Results in Table 4 show that under the optimization approach for untargeted attacks, with the
perturbation budget € set to 1.0, step size €;z set to 0.5, and the number of iterations nj,. set to
20, PGD most frequently achieves the highest attack success rate. We also conduct white-box
adversarial attacks on the action detector, but the success rate is almost 0. Therefore, in all the
following experiments we use the strongest PGD adversarial samples generated in the above
setting (e =1.0, €;;, =0.5, nj;, =20) to evaluate the robustness of the infection detector.

Table 4. Performance of Pre-evolved Detectors on White-box Adversarial Samples

Input Reconnaissance Detector Infection Detector
Optimize =~ Name € €jize Nize | TP FN FNR(%) Recall(%) | TP FN FNR(%) Recall(%)
- Clean - - - 3064 13 0.42 99.58 126 192 60.38 39.62
FGSM 05 - - 66 3011 97.86 2.14 5 313 98.43 1.57
Untargeted FGSM 1.0 - - 48 3029 98.44 1.56 0 318 100.00 0.00
PGD 05 0.25 20 48 3029 98.44 1.56 5 313 98.43 1.57
PGD 1.0 05 20 29 3048 99.06 0.94 0 318 100.00 0.00
FGSM 05 - - 67 3010 97.82 2.18 110 208 65.41 34.59
FGSM 1.0 - - 52 3025 98.31 1.69 9 222 69.81 30.19
Targeted
PGD 05 0.25 20 89 2988 97.11 2.89 100 218 68.55 31.45
PGD 10 05 20 239 2838 9223 7.77 4 314 98.74 1.26

8.3 Impact of the Threshold of the Sequence Analyzer

To analyze event sequences and identify infection events, we train a Seq2Seq translation model
based on the LSTM cells and the attention mechanism according to the standard training strategy.
We set the sequence length to 10, that is, every 10 events form an event sequence. Since ARIoTEDef
uses equal-length sequence translation, the output is a tag sequence with a length of 10 as well. The
event samples used for training and testing the sequence analyzer are generated by three per-step
detectors from the infection window dataset.

We can see from Table 3 that the number of benign samples in the infection test set is much
larger than the number of infection samples. Thus, for the sequences of events, the benign events
in a sequence will appear much more frequently than the infections. Since the attention-based
sequence analyzer refers to contextual events when predicting each event, under such a mechanism,
benign events can easily have benign scores close to 0, while malicious events cannot easily have
malicious scores close to 1. As a result, the score threshold between benign and malicious categories
has a key impact on the performance of the sequence analyzer.

To identify as many TP and TN samples as possible during the self-evolution of ARIoTEDef, we
train the sequence analyzer with different thresholds and random seeds and evaluate its performance
on the clean infection test set. The experimental results are shown in Table 5. The results show
that when using the commonly used score threshold of 0.5, the Seq2Seq model exhibits a very low

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 23

FPR, but has a high FNR, which shows that many malicious events are mislabeled as benign. After
we reduce the score threshold to 0.1, there is a clear improvement in FNR. It shows that some of
the malicious samples that were mislabeled in the previous threshold setting are correctly tagged
under the current setting. In addition, FNR increases but to a limited extent. Through multiple tries,
we found that when the threshold is set to 0.01, an ideal balance can be achieved between precision
and recall. More intuitively, such a threshold results in the highest average F1 score. Therefore, in
all the following experiments, we use the threshold 0.01 for the sequence analyzer.

Table 5. Performance of The Sequence Analyzer on Clean Test Set

Threshold Seed TP FN TN FP FNR(%) FPR(%) Precision(%) Recall(%) F1(%) Accuracy(%)

0 75 277 3869 3 7869 0.8 96.15 2131 34.88 93.37

1 93 259 3870 2 7358 0.05 97.89 2642 41.61 93.82

0.5 2 62 290 3872 0 8239 0.00 100.00 17.61 29.95 93.13
3 60 292 3871 1 8295 0.3 98.36 17.05 29.06 93.06

Average 73 280 3871 2 7940 0.04 98.10 2060 33.88 9335

0 117 235 3869 3 6676 0.08 97.50 3324 49.58 94.37

1 126 226 3857 15 6420 0.39 89.36 3580 51.12 94.29

0.1 2 79 273 3845 27 7756 0.70 74.53 2244 34.50 92.90
3 76 276 3863 9 7841 023 89.41 2159 34.78 93.25

Average 100 253 3859 14 7173 035 87.70 2827 42.49 93.70

0 138 214 3841 31 60.80 0.80 81.66 3920 52.98 94.20

1 163 189 3771 101 53.69 261 61.74 4631 5292 93.13

0.01 2 158 194 3695 177 5511 4.57 47.16 4489 46.00 91.22
3 154 198 3782 90 5625 232 63.11 4375 51.68 93.18

Average 153 199 3772 100 5646 2.58 63.42 4354 50.89 92.93

8.4 Robustness of the Evolved Infection Detector in the Adversarial Setting |

8.4.1 Adversarial Attack and Defense Setting I. Assume the attacker launches a total of N rounds
of adversarial evasion attacks against ARIOTEDef. The clean infection test set (see Subsection 8.1.3)
is denoted as X, and the pre-evolved infection detector is denoted as M. In the Adversarial Setting
L, the attacker constructs adversarial infection samples based on the same clean infection test set
and the latest evolved target infection detector each time to launch an adversarial evasion attack.
Note that since the adversarial infection samples used in each attack round are crafted based on
different target models, they belong to different adversarial data distributions. The specific process
of attack and defense is as follows:

e In the 1st round of attack, the attacker constructs an adversarial dataset AdvX; based on X and
M,, then sends it to the target NIDS. ARIoTEDef relabels AdvX; according to the improved
evolution strategy described in Section 7, and then uses relabeled AdvX; for retraining M, to
obtain the 1st updated infection detector M;.

e In the 2nd round of attack, the attacker constructs AdvX,; based on X and M, then sends
it to the target NIDS. ARIoTEDef continues to relabel AdvX,, and then uses the relabeled
AduvX; to retrain M to obtain the 2nd updated detector M,.

e The attacker continues with successive rounds of attack, following the strategies from prior
rounds, and ARIoTEDef performs relabeling and retraining, as in the previous rounds.

e In the last round of attack, the attacker constructs an adversarial dataset AdvXy based on
X and My, then sends it to the target NIDS. ARIoTEDef relabels AdvXy, and then uses
relabeled AduXy to retrain My_; to obtain the Nth updated infection detector My.

For the evaluation of ARIoOTEDef in the Adversarial Setting I, for the evolved detector My, we
use the adversarial test set AdvXn,; constructed based on X and My to evaluate the white-box
robustness of My and use X to evaluate the performance of My on the clean test set.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

24 Huang et al.

8.4.2 Performance of the Evolved Infection Detector on Adversarial Samples. We answered the
following research questions based on experimental data.

e Does the FN of the infection detector on white-box adversarial samples decrease after multiple
rounds of evolution?
e How many rounds of evolution can the detector be robust to white-box adversarial attacks?

We conducted experiments with different numbers of self-evolution rounds and repeated the
experiments with multiple random seeds. According to Table 3, the clean infection test set contains
3915 clean benign samples and 318 clean malicious samples. In each round of adversarial evasion
attack, we construct adversarial infection samples based on these clean infection samples and the
updated infection detector in the previous round and then use them to attack the target system.
After each round of evolution, we construct adversarial infection samples based on these 318 clean
infection samples and the latest update of the infection detector to form a white box adversarial
infection test set. The evaluation results for our proposed self-evolution strategy on the infection
detector against white-box adversarial attacks are shown in Table 6.

Table 6. Performance of the Evolved Infection Detector on White-box Adversarial Samples (AdvSetting 1)

Evolution Round 0 20 40 80
Seed - 0 1 2 average| 0 1 2 average| 0 1 2 average
TP 0 194 198 227 206 232 233 212 226 229 305 250 261
FN 318 124 120 91 112 86 85 106 92 89 13 68 57
FNR(%) 100.00 | 38.99 37.74 28.62 35.12 |27.04 26.73 3333 29.04 |27.99 4.09 2138 17.82
Recall(%) 0.00 |61.01 62.26 7138 64.88 |72.96 73.27 66.67 70.96 |72.01 95.91 78.62 82.18
Adversarial Setting | Adversarial Setting |
. 100
300 S
S 250 3 %0
3 s
g 20 - N T«.Sj 60 = Recall
E 150 - TP O . FNR
g § 40
Z 100 3
T >
50 DZ: 0
w
0 0
Mo M20 M40 M80 Mo M20 M40 M80
Evolved Model Evolved Model

Fig. 9. Average Performance of the Evolved Infection Detector on Adversarial Samples (AdvSetting I)

We observe that the pre-evolved infection detector (evolution round is 0) is hardly robust against
the white-box adversarial PGD attack, since all adversarial infection samples are misclassified as
benign, resulting in an FNR close to 100%. After self-evolution, the recall of the updated infection
detector significantly improves. After 20 rounds, 40 rounds, and 80 rounds of self-evolution, the
average recall of the infection detector increases to 64.88%, 70.96%, and 82.18%, respectively. In the
best case, the recall of the infection detector even increases from 0% to 95.91%. Such results show
that the self-evolution strategy effectively improves the ability of infection detectors to identify
more deceptive malicious samples.

From the average trend shown in Figure 9, we can see that the robustness of the detector is
proportional to the number of evolution rounds. The reason is that the more adversarial samples
the detector has seen during retraining, the more familiar it is with the patterns of adversarial
infections, and it is thus better at identifying anomalies on unseen adversarial test samples.

Since the distribution of adversarial data keeps changing over multiple rounds of evolution,
the robustness improvement of the detector is also continuous. In general, within 30 rounds of

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 25

Adversarial Setting | Adversarial Setting | Adversarial Setting |
)
2 100 S 100 100
S S
3]
£ 80 E 80 @ 80
s = e
K = S
S 60 § o0 3 60
5] [o
% =] g
2 40 < 2 E w
5 S 3
— < o
g 20 & 20 o 20
x 3
zZ [}
0 o 0 0
W [ra
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Evolution Round Evolution Round Evolution Round

Fig. 10. Impact of the Number of Evolution Rounds on Robustness against White-box Attack (AdvSetting I)

evolution, the accuracy of the infection detector on white-box adversarial samples can increase to
more than 50%, and the FNR starts to converge to 20 % since round 40, as shown in Figure 10.

8.4.3 Performance of the Evolved Infection Detector on Non-adversarial Samples. We answered the
following research question based on experimental data:
e Does the FP of the infection detector on non-adversarial samples (clean data) increase after
multiple rounds of evolution?

Since the ideal robustness improvement cannot be at the expense of the performance of the
detector when dealing with non-adversarial black-box attacks, we evaluate the performance of the
evolved infection detector on the clean test set. We collected performance data for the evolved
detectors on the clean test set under different evolution rounds and random seed settings. Note
that the samples in the clean test set are not used in retraining. Results are shown in Table 7.

Table 7. Performance of Evolved Infection Detector on Clean Test Set (AdvSetting I)

Evolution Round Seed TP FN TN FP FNR(%) FPR(%) Precision(%) Recall(%) F1(%) Accuracy(%)

0 E 126 192 3887 28 6038 0.72 81.82 39.62 5339 94.80
0 215 103 3793 122 3239 3.2 63.80 67.61 65.65 94.68

" 1 214 104 3766 149 3270 3.81 58.95 6730 6285 94.02
2 292 26 3719 196 818 501 59.84 91.82 7246 94.76

average 240 78 3759 156 2442 3.98 60.86 7558 66.98 94.49

0 238 80 3676 239 2516 6.10 49.90 74.84 59.87 92.46

10 1 234 84 3671 244 2642 623 48.95 7358 58.79 92.25
2 214 104 3783 132 3270 3.37 61.85 6730 64.46 94.42

average 229 89 3710 205 2809 524 53.57 7191 61.04 93.05

0 229 89 3685 230 2799 587 49.89 7201 58.94 92.46

%0 1 305 13 3712 203 4.09 519 60.04 9591 73.85 94.90
2 250 68 3770 145 2138 3.70 63.29 7862 7013 94.97

average 261 57 3722 193 17.82 4.92 57.74 82.18 67.64 94.11

We observe that compared with the pre-evolved infection detector (evolution round is 0), the
evolved infection detector significantly improves concerning the recall, F1, and an overall unchanged
accuracy on the clean test set. From Figure 11 we can see that, compared with the sharp drop of
average FNR of the evolved infection detector on the clean test set, the FPR increase on the clean
test set is very weak. This suggests that the evolved infection detector has a stronger ability to
identify truly malicious samples (decreased FNR), including those that are non-adversarial. Note
that the detector learns to predict some low-confidence abnormal patterns (such as adversarial
malicious patterns) as positive during the retraining process, which leads the detector to judge
the negative category more strictly than before evolution. Thus, some normal patterns with low
confidence can be easily misclassified as anomalies, resulting in a slightly increased FP. However,

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

26 Huang et al.

- Adversarial Setting | Adversarial Setting | Adversarial Setting |
17y
@ 100 ENR _ 100 100
173 I3 - - ~rAs o
o — FPR ? 3
- 80 % 80 c 80
< @ ©
o = o
[} S (@)
= 60 8 o0 = 60
2 o 2
S c S
IS S a0 e w0
o < >
o S Q
T T 20 g 20
© g 3
S 9] <
@ e —————— 2
Z o 0 0
w
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Evolution Round Evolution Round Evolution Round

Fig. 11. Impact of the Evolution Round on Performance on the Clean Test Set (AdvSetting I)

we can see from the stable accuracy rate close to 95% and the increasing F1 score that the slight
decline in precision is almost negligible compared to the significant increase in recall.

8.5 Robustness of The Evolved Infection Detector in Adversarial Setting Il

8.5.1 Adversarial Attack and Defense Setting Il. Assume that the attacker launches a total of N
rounds of adversarial evasion attacks against ARIOTEDef. The clean infection test set introduced
in Subsection 8.1.3 is denoted as X, and the pre-evolved infection detector is denoted as M. In
Adversarial Setting II, in each new round of adversarial attack, the adversary will not only craft
adversarial samples based on the latest evolved detector, but also use a clean infection test set
different from the previous round of attacks. To carry out the experiments, we split the clean
infection test set X into N sub-datasets X, Xs, ..., Xn, Xna+1-

When training without evolution, the clean infection test set is consistent with that described in
Table 3. For N rounds of evolution, we split the original clean test set into N + 1 sub-test sets. The
number of benign samples and the number of malicious samples in each sub-test set are the same.
The specific process of attack and defense is as follows:

e In the 1st round of attack, the attacker constructs an adversarial dataset AdvX; based on X;
and M, then sends it to the target NIDS. ARIoTEDef relabels AdvX; according to the improved
evolution strategy described in Section 7, and then uses relabeled AdvX; for retraining M, to
obtain a 1st updated detector M;.

e In the 2nd round of attack, the attacker constructs AdvX, based on X, and M, then sends it
to the target NIDS. ARIoTEDef continues to relabel AdvX5, and then uses relabeled AdvX; to
retrain M; to obtain a 2nd updated detector M,.

e The attacker continues with successive rounds of attack, following the strategies from prior
rounds, and ARIOTEDef performs relabeling and retraining, as in the previous rounds.

e In the last round of attack, the attacker constructs an adversarial dataset AdvXy based on
Xn and My_, then sends it to the target NIDS. ARIoTEDef relabels AduXy, and then uses
relabeled AduXN to retrain My_; to obtain a Nth updated detector My.

In Adversarial Setting II, for the evolved detector My, we use the adversarial test set AdoXn1
constructed based on Xy4; and My to evaluate the white-box robustness of My and use Xy, to
evaluate the performance of My on the clean test set. We simultaneously record the performance
of two neighboring evolved detectors on an unseen clean test set (My and M; on X,, M; and M, on
Xs,....Mn—1 and My on Xn.1) to analyze the impact of each (1st, 2nd, ..., Nth) round of evolution on
the performance of the detector. The main difference between Adversarial Setting Il and Adversarial
Setting I is that a new clean dataset is used to construct adversarial samples in each attack round.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 27

8.5.2 Performance of the Evolved Infection Detector on Adversarial Samples. We let the infection
detector evolve for 5 rounds, 10 rounds, and 20 rounds sequentially. According to the number of
evolution rounds, the original infection test set is divided into several sub-datasets (see Table 8).

Table 8. Clean Test Sets Used in Adversarial Setting |1

Evolution Round Test Set Num Test Set Size Benign Num in Each Test Set Malicious Num in Each Test Set

0 1 4233 3915 318
5 6 705 652 53
10 11 383 355 28
20 21 201 186 15

We answered the following questions based on experimental data:

e Does the FN of the infection detector on white-box adversarial samples decrease after multiple
rounds of evolution?

e Does the number of adversarial samples used in each attack round affect the effectiveness of
the self-evolution strategy for robustness improvement?

To ensure the fairness of the experiment, when evaluating the pre-evolved detector (baseline
model), we also used an adversarial test set of the same size as that for evaluating the evolved
detector. We set three random seeds for multiple experiments. The performance of the detector
before and after evolution on the white-box adversarial test set is shown in Table 9.

Table 9. Performance of the Evolved Infection Detector on White-box Adversarial Samples

(AdvSetting II)
AdvSet Size 53 28 15
Evolution Round| 0 5 0 10 0 20

Seed - 0 1 2 average| - 0 1 2 average| - 0 1 2 average
TP 0 3 17 3 8 0 6 6 0 4 0 1 1 1 1
FN 53 50 36 50 45 28 22 27 28 24 15 14 14 14 14

FNR(%) 100.00{94.34 67.92 94.34 85.53 [100.00| 78.57 78.57 100.00 85.71 |100.00{93.33 93.33 93.33 93.33

Recall(%) 0.00 |5.66 32.08 5.66 14.47 | 0.00 | 21.43 21.43 0.00 14.29 | 0.00 | 6.67 6.67 6.67 6.67

Adversarial Setting Il Adversarial Setting Il
100

@
S

@
S

B Pre-evolved

30 Bl Pre-evolved
W Evolved

= Evolved

i -
0

5 10 20 5 10 20
Evolution Round Evolution Round

FNR Value (%)

FN Value
8

N
S

Fig. 12. Average Performance of the Evolved Infection Detector on Adversarial Samples (AdvSetting I1)

We observe that in the adversarial setting II, the pre-evolved infection detectors all have a recall
of 0 when evaluated on adversarial test sets of different sizes. This suggests that the pre-evolved
detector has difficulty in identifying adversarial infection samples designed to masquerade as
benign. After 5, 10, and 20 rounds of evolution, the average recall of the infection detector increased
to 14.47%, 14.29%, and 6.67%, respectively, showing that evolution helps to reduce FN and increase
TP. In addition, we can see from Figure 12 that the number of adversarial samples in each attack
and defense round does not essentially affect the effectiveness of the self-evolution strategy. For

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

28 Huang et al.

example, in 20 rounds of evolution, even when there are only 15 adversarial infection samples
in each round of attack, the FNR of the evolved detector is still lower than that before evolution,
indicating that the white-box robustness of the detector resulting from the evolution increases.

In general, the more adversarial samples used in each round of attack, the more beneficial the
self-evolution strategy is to the improvement of robustness, because more adversarial samples mean
the model will be trained on a wider variety of situations. If only a small number of adversarial
samples are used, the adversarial perturbation patterns that the model can learn are very limited,
making it difficult to generalize to other unknown perturbation patterns. However, thanks to the
multi-step detection approach and the attention mechanism, if adversarial samples are generated
based on unknown patterns, these samples can be detected as malicious with high probability, and
thus the infection detector can be retrained properly.

Adversarial Setting Il Adversarial Setting Il Adversarial Setting Il

3
3
=
1)
S}
o
1)
5]

—— Round=20, AdvSet Size=15
= Round=10, AdvSet Size=28
80 = Round=05, AdvSet Size=53

@
S

|

Recall (%) on Adversarial Infections

IS
3
=3
S

= Round=20, AdvSet Size=15
— Round=10, AdvSet Size=28
—— Round=05, AdvSet Size=53

—_—

IS
S

@
8
Cost Time (seconds)

—— Round=20, AdvSet Size=15
—— Round=10, AdvSet Size=28
0 0 —— Round=05, AdvSet Size=53
1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Evolution Round Evolution Round Evolution Round

N
S

FN on Adversarial Infections
~
38

H
1S
o

Fig. 13. Impact of the Number of Adversarial Attack Samples on the Performance (AdvSetting II)

To assess the impact of the size of the adversarial dataset on the improvement of robustness, we
collected performance data for the first 5 rounds in 10-round evolution and 20-round evolution and
compared them with the performance of 5-round evolution. The results are shown in Figure 13.
Although not every round of adversarial samples with a larger size can win the race with the
infection detector (because the number of adversarial samples used for evolution also depends on
the prediction by the sequence analyzer), we can conclude that the higher the number of attack
samples, the more the number of FN decreases. The number of attack samples depends on the
attacker’s behavior, whether the attacker is fast and sends a lot of malicious samples in a short time
or is slow and sends malicious samples over long periods. The more attack samples sent, the more
beneficial the self-evolution strategy is to improve the robustness of the system. However, for both
types of behavior, ARIoTEDef is robust because of the multi-detector approach.

8.5.3 Performance of the Evolved Infection Detector on Non-adversarial Samples. We answer the
following question based on experimental data:

o Does the FP of the infection detector on non-adversarial samples (clean data) increase after
multiple rounds of evolution?

We performed 5 rounds, 10 rounds, and 20 rounds of evolution on the infection detector, and
evaluated the performance of the detector on the clean test set before and after each round of
evolution. It is worth emphasizing that, the test set used for the evaluation before and after any
round of evolution is the same, but the test sets between different rounds of evolution are various.
The purpose of this design is to ensure that the test samples never participate in the retraining of
the detector. The specific construction method of the test set is described in Subsection 8.5.1. We
repeated the experiment using three random seeds, and show the results in Figure 14.

The left column graph and right column graph of each x axis coordinate point show the perfor-
mance of the detector on the clean test set before and after the corresponding round of evolution,

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 29

Adversarial Setting Il Adversarial Setting Il Adversarial Setting Il
100w Before the current round 100w Before the current round 100w Before the current round
% BN After the current round ﬁ B After the current round g B After the current round
g 8 3 80 g 8
[[=
§ § §
g o0 § o0 § o0
[3) () ()
= < <
S 4 S 40 S 40
S S S
T 20 T 20 T 20
w w H w
0 s e . e skl o F . o —- . il
0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10 012345678 91011121314151617181920
Evolution Round Evolution Round Evolution Round
Adversarial Setting Il Adversarial Setting Il Adversarial Setting Il
% 100 5 100 % 100
n n 0
@ B k7]
e 80 2 80 2 80
< < <
o o o
o @ @
G 60 - seforeme current round G 60 — Be!urethe cunemmund o 60 e Before the current round
5 W After the current round 5 W After the current round 5 After the current round
§ 40 §/ 40 &Q/ 40
> > >
8 8 8
£ 2 £ 20 S 20
8 8 8
< < <
0 0 0
0 1 2 3 4 5 6 7 8 9 10 012345678 91011121314151617181920
Evolu!lon Round Evolution Round Evolution Round

Fig. 14. Performance of Evolved Infection Detector on the Clean Test Set (AdvSetting II)

respectively. We observe that the self-evolution strategy results in only a very slight increase in
FPR under different numbers of retraining rounds. Combined with the accuracy performance on
the clean test set, the detector after multiple rounds of evolution is not only more robust against
strong white-box adversarial evasion attacks, but also remains stable on non-adversarial samples.

8.6 Computational, Storage, and Time Overhead

In IoT settings, rapid data processing is crucial, requiring DNN-based NIDS to swiftly predict
and respond to potential intrusions. Our solution prioritizes lightweight models suitable for IoT
scenarios with limited computing and storage. To assess the applicability of our solution, we
conducted a comprehensive evaluation from the perspective of the number of model parameters,
the storage space required for deployment, and time costs in each stage.

8.6.1 Computational and Storage Overhead. We separately counted the computational overhead of
the model during training and inference. Training, typically on powerful servers without affecting
IoT devices that only need to deploy the trained model, incurs a total of 218,753 neuron parameters
for each per-step detector (Reconnaissance, Infection, Action), and 200,705 for the Sequence Ana-
lyzer. Maximum GPU power consumption during training is 115W for per-step detectors and 152W
for the Sequence Analyzer. In the inference phase, with the architecture, weights, optimizer status,
and other information of the model stored in HDF5 format, each per-step detector and Sequence
Analyzer has a size of 2.6M and 2.4M, respectively.

8.6.2 Time Overhead. We also independently analyzed the time overhead of different modules in
ARIoTEDef during training and inference, detailed in Figure 15. In the training phase, per-step
detectors (Reconnaissance, Infection, Action) converge within 40 epochs, while each epoch taking
0.75s, 1.05s, and 1.0s, respectively. The Sequence Analyzer, due to the need to learn more complex
event sequence patterns, takes an average of 12.25s per epoch.

In the inference phase, when the trained models are used for prediction, the per-step detector
(represented by the Infection detector) only takes 0.007s to predict a window, and the Sequence
Analyzer tags an event sequence in 0.065s. In addition, assume that the attacker sends 318 adversarial
samples in each round, the time overhead of evolution will be related to the number of epochs

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

30 Huang et al.

required for retraining the Infection detector in each round. Under the default setting of 40 epochs,
it takes about 55s for per-round evolution.

Standard Train Per-step Detector 150 Standard Train Sequence Analyzer Predict Infection Detector Evolve

A

a4

°
8
m
8

—— Reconnaissance —— Infection Detector
— Infection —— Sequence Analyzer

= Action
Y SV \

,4
=
@

3

onds)
g
3
[

o

&

@
)
g

IS
]
°
"
8

———— e ——

5 &

3

Cost Time (seconds)
9
5

Cost Time (seconds)
Cost Time (seconds)
8

Cost Time (e
N
>

—— 40 epochs per round
—— 30 epochs per round
—— 20 epochs per round

°
®
@
5

°
ES
°
°
3
8
°

o 10 20 30 40 0 10 20 30 40 o 5 10 15 20 o 5 10 15 20
Training Epoch Training Epoch Evolution Round Evolution Round

Fig. 15. Time Cost in the Training and Inference Phases
8.7 Robustness Performance Comparison with Existing Work

To fully demonstrate the robustness performance of ARIoTEDef in adversarial environments, we
also compare it with the powerful PGD-based Adversarial Training (PGD-AT) [31], which is most
often chosen as a strong baseline for robustness comparisons. It involves creating adversarial
samples based on the original training samples and incorporating them into the training set to
optimize the model. However, different from PGD-AT, which assumes that the defender has prior
knowledge of adversarial attack methods and can actively construct adversarial samples, we do
not generate adversarial samples, but only capture and use advanced sequence analyzers to tag
adversarial samples. Therefore, we not only relax the assumptions about the defender’s capabilities
but also avoid expensive generation overhead. As can be seen from Figure 16, after three times
experiments, the Recall of the 80-round evolved Infection detector on white-box adversarial samples
is 8.38% higher than that of PGD-AT trained detector on average. This suggests that more adversarial
infection samples are correctly identified. In addition, as shown in Figure 17, our evolved model also
has higher precision (27.13% higher), F1-score (22.11% higher), accuracy (10.39% higher), and lower
FPR (11.82% lower) on non-adversarial infection and benign samples than the PGD-AT trained
detector on average. This indicates that fewer actual normal samples are misclassified as infection.

Performance on Adversarial Samples Performance on Adversarial Samples Performance on Adversarial Samples Performance on Adversarial Samples
100 100
- PGD-AT
N ARIOTEDef
80 250 80 80
g g
g 60 g 200 T 60 o 60
3 3 - pen AT = 2 m— PGD-AT
; : 150 = ARIOTEDef s > = ARIOTEDef
T a0 = % 40 B 40
100 s g
20 20 20
= PGD-AT 50
" ARIOTEDe!
o — o o o
Seed:0 Seedl Seed2 Average Seed:0 Seedl Seed2 Average Seed:0 Seedl Seed2 Average Seed:0 Seedl Seed2 Average

Fig. 16. Adversarial Robustness Performance Comparison on White-box Adversarial Samples

Performance on Clean Test Set Performance on Clean Test Set Performance on Clean Test Set Performance on Clean Test Set
100 100 100
m— PGD-AT = PGD-AT m— PGD-AT
W ARIOTEDef W ARIOTEDef N ARIOTEDef
80 80 80 80
= g g
& o S o
o 60 R < 60 EY
2 s E g PGD-AT
= s 8 2 ARIOTEDef
@ 40 B 40 2 40 & 40
o k] iy 3
= 2 S
a <
20 20 20 20

Seed0 Seed-l Seed2 Average Seed-0 Seed-1 Seed2 Average Seed-0 Seed-l Seed2 Average Seed0 Seed-l Seed2 Average

Fig. 17. Regular Performance Comparison on the Clean Test Set

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 31

9 CONCLUSION

In this paper, we have introduced ARIOTEDef, a kill chain-based approach for early detection
of persistent attacks against 10T devices. To improve the robustness of the infection detector,
ARIOTEDef adopts a feedback strategy that backtracks past events to identify infection events
when anomalies at the later steps are detected. We show that ARIoTEDef is not only effective
in detecting non-adversarial black-box infection attacks but also improves the robustness of the
infection detector against DL-based adversarial white-box attacks. In the case of PGD, the most
powerful white-box adversarial attacks to our knowledge, our experiments show that after 20
rounds, 40 rounds, and 80 rounds of self-evolution, the average recall of the infection detector on
the evasion attack improves from 0% to 64.88%, 70.96% and 82.18%, respectively. We plan to enhance
our approach with host information, such as system calls and CPU/memory and resource usage,
and more steps of the cyber kill chain, such as lateral movement and obfuscation, as part of future
work. The implementation of the source codes is released at https://github.com/ariotedef.

ACKNOWLEDGMENTS

This work has been supported by Cisco Research, NSF Grants No. 2112471 and No. 2229876, Purdue
University, and Xidian University.

REFERENCES

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi,
M. Kallitsis, et al. 2017. Understanding the Mirai Botnet. In Proceedings of the USENIX Security Symposium. USENIX,
Vancouver, BC, Canada, 1093-1110.

[2] D.Bahdanau, K. H. Cho, and Y. Bengio. 2015. Neural Machine Translation by Jointly Learning to Align and Translate.
In Proceedings of International Conference on Learning Representations. ICLR, San Diego, CA, USA, 1-15.

[3] L. Bilge and T. Dumitras. 2012. Before We Knew It: An Empirical Study of Zero-day Attacks in The Real World.
In Proceedings of the ACM Conference on Computer & Communications Security (CCS). ACM, Raleigh, NC, USA,
833-844.

[4] W. Brendel, J. Rauber, and M. Bethge. 2018. Decision-based Adversarial Attacks: Reliable Attacks against Black-box
Machine Learning Models. In Proceedings of International Conference on Learning Representations. ICLR, Vancouver,
BC, Canada, 1-12.

[5] S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath. 2021. An Attentive Survey of Attention Models. ACM
Transactions on Intelligent Systems and Technology (TIST) 12, 5 (2021), 1-32.

[6] J. Chen, M. I. Jordan, and M. J. Wainwright. 2020. Hopskipjumpattack: A Query-efficient Decision-based Attack. In
Proceedings of IEEE Symposium on Security and Privacy (S&P). IEEE, San Francisco, CA, USA, 1277-1294.

[7] K. Cho, B. Van Merrienboer, D. Bahdanau, and Y. Bengio. 2014. On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches. In Proceedings of Syntax, Semantics and Structure in Statistical Translation (SSST).
ACL, Doha, Qatar, 103-112.

[8] E. Cole. 2016. Threat Hunting: Open Season on the Adversary. SANS Institute Information Reading Room 1, 1 (2016),
1-23.

[9] CoreSecurity. 2014. Pcapy. https://github.com/helpsystems/pcapy.

[10] D. Dingee. 2019. IoT, Not People, Now the Weakest Link in Security. https://devops.com/iot-not-people-now-the-
weakest-link-in-security/.

[11] G. D. Forney. 1973. The Viterbi Algorithm. IEEE 61, 3 (1973), 268-278.

[12] Y. Fu, Z. Yan, J. Cao, O. Koné, X. Cao, et al. 2017. An Automata-based Intrusion Detection Method for Internet of
Things. Mobile Information Systems 1, 1 (2017), 1-13.

[13] I.J. Goodfellow, J. Shlens, and C. Szegedy. 2015. Explaining and Harnessing Adversarial Examples. In Proceedings of
International Conference on Learning Representations. ICLR, San Diego, CA, USA, 1-11.

[14] A. Goodge, B. Hooi, S. K. Ng, and W. S. Ng. 2020. Robustness of Autoencoders for Anomaly Detection Under
Adversarial Impact. In Proceedings of the International Joint Conference on Artificial Intelligence. IJCAI Yokohama,
Japan, 1244-1250.

[15] A. Graves. 2012. Long Short-term Memory. Supervised Sequence Labelling with Recurrent Neural Networks 1, 1
(2012), 37-45.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

https://github.com/helpsystems/pcapy
https://devops.com/iot-not-people-now-the-weakest-link-in-security/
https://devops.com/iot-not-people-now-the-weakest-link-in-security/

32

[16]
[17]
[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

Huang et al.

G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee. 2007. Bothunter: Detecting Malware Infection through
IDS-driven Dialog Correlation. In Proceedings of USENIX Security Symposium. USENIX, Boston, MA, USA, 1-16.

S. Haas and M. Fischer. 2018. GAC: Graph-based Alert Correlation for the Detection of Distributed Multi-step Attacks.
In Proceedings of the Annual ACM Symposium on Applied Computing (SAC). ACM, Pau, France, 979-988.

X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer. 2020. UNICORN: Runtime Provenance-Based Detector for
Advanced Persistent Threats. In Proceedings of Network and Distributed System Security Symposium. NDSS, San
Diego, California, USA, 1-18.

E. Hutchins, M. Cloppert, and R. Amin. 2011. Intelligence-driven Computer Network Defense Informed by Analysis of
Adversary Campaigns and Intrusion Kill Chains. Information Warfare & Security Research 1, 1 (2011), 80.

K. A. Jallad, M. Aljnidi, and M. S. Desouki. 2020. Anomaly Detection Optimization Using Big Data and Deep Learning
to Reduce False-positive. Journal of Big Data 7, 1 (2020), 1-12.

M. Javed and V. Paxson. 2013. Detecting Stealthy, Distributed SSH Brute-forcing. In Proceedings of the ACM SIGSAC
Conference on Computer & Communications Security (CCS). ACM, Berlin, Germany, 85-95.

H.Kang, D. Ahn, G. Lee, J. Yoo, K. Park, and H. Kim. 2019. IoT Network Intrusion Dataset. https://ieee-dataport.org/open-
access/iot-network-intrusion-dataset.

Keras. 2016. Keras. https://keras.io/.

F. Klassen and AppNeta. 2018. Tcpreplay. https://tcpreplay.appneta.com/.

B. Krebs. 2017. Reaper: Calm before the IoT Security Storm. https://krebsonsecurity.com/2017/10/reaper-calm-before-
the-iot-security-storm/.

B. Lantz, B. Heller, and N. McKeown. 2010. A Network in A Laptop: Rapid Prototyping for Software-Defined Networks.
In Proceedings of the ACM SIGCOMM Workshop on Hot Topics in Networks (Hotnets). ACM, New York City, NY,
USA, 1-6.

A. H. Lashkari. 2018. CICFlowMeter Features. https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt.

H. Lee, A. Mudgerikar, A. Kundu, N. Li, and E. Bertino. 2022. An Infection-Identifying and Self-evolving System
for IoT Early Defense from Multi-step Attacks. In European Symposium on Research in Computer Security. Springer,
Copenhagen, Denmark, 549-568.

C. Liu, Y. Liu, Y. Yan, and J. Wang. 2020. An Intrusion Detection Model with Hierarchical Attention Mechanism. IEEE
Access 8 (2020), 67542-67554.

M. T. Luong, H. Pham, and C. D. Manning. 2015. Effective Approaches to Attention-based Neural Machine Translation.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). ACL, Lisbon,
Portugal, 1412-1421.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. 2018. Towards Deep Learning Models Resistant to
Adversarial Attacks. In Proceedings of International Conference on Learning Representations. ICLR, Vancouver, BC,
Canada, 1-28.

Heikki Mannila, Hannu Toivonen, and A. I. Verkamo. 1997. Discovery of Frequent Episodes in Event Sequences. Data
mining and knowledge discovery 1, 3 (1997), 259-289.

D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino. 2017. Kalis: A System for Knowledge-driven Adaptable Intrusion
Detection for Internet of Things. In Proceedings of IEEE International Conference on Distributed Computing Systems
(ICDCS). IEEE, Atlanta, GA, USA, 656—-666.

S. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan. 2019. Holmes: Real-time Apt Detection through
Correlation of Suspicious Information Flows. In Proceedings of IEEE Symposium on Security and Privacy (S&P). IEEE,
San Francisco, CA, USA, 1137-1152.

S. M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. 2016. DeepFool: A Simple and Accurate Method to Fool Deep Neural
Networks. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Las
Vegas, NV, USA, 2574-2582.

Msehgal. 2021. Protect Your IoT Devices from Log4j 2 Vulnerability.

A. Mudgerikar, P. Sharma, and E. Bertino. 2019. E-Spion: A System-level Intrusion Detection System for IoT Devices. In
Proceedings of the ACM Asia Conference on Computer and Communications Security. ACM, Auckland, New Zealand,
493-500.

J. Navarro, A. Deruyver, and P. Parrend. 2018. A Systematic Survey on Multi-step Attack Detection. Computers &
Security 76 (2018), 214-249.

T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A. R. Sadeghi. 2019. DIoT: A Federated
Self-learning Anomaly Detection System for IoT. In Proceedings of IEEE International Conference on Distributed
Computing Systems (ICDCS). IEEE, Dallas, TX, USA, 756-767.

M. I Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig,
et al. 2018. Adversarial Robustness Toolbox v1. 0.0. arXiv preprint 1 (2018), 1-34.

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
https://ieee-dataport.org/open-access/iot-network-intrusion-dataset
https://keras.io/
https://tcpreplay.appneta.com/
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://krebsonsecurity.com/2017/10/reaper-calm-before-the-iot-security-storm/
https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt

ARIoTEDef: Adversarially Robust loT Early Defense System Based on Self-Evolution against Multi-step Attacks 33

[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]

[51]

[52]

C. Osborne. 2021. This is Why the Mozi Botnet Will Linger On. https://www.zdnet.com/article/this-is-why-the-mozi-
botnet-will-linger-on/.

D. Palmer. 2022. This Sneaky Hacking Group Hid Inside Networks for 18 Months without Being Detected.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. 2016. The Limitations of Deep Learn-
ing in Adversarial Settings. In Proceedings of IEEE European symposium on security and privacy (EuroS&P). IEEE,
Saarbrucken, Germany, 372-387.

B. Pinkas and T. Sander. 2002. Securing Passwords against Dictionary Attacks. In Proceedings of the ACM Conference
on Computer & Communications Security (CCS). ACM, Washington, DC, USA, 161-170.

Check Point Research. 2017. IoTroop Botnet: The Full Investigation. https://research.checkpoint.com/2017/iotroop-
botnet-full-investigation/.

M. Sarkar. 2000. Modular Pattern Classifiers: A Brief Survey. In Proceedings of IEEE International Conference on
Systems, Man and Cybernetics (SMC). IEEE, Toronto, ON, Canada, 2878-2883.

Inc. Sqrrl Data. 2018. A Framework for Cyber Threat Hunting. https://www.threathunting.net/files/framework-for-
threat-hunting-whitepaper.pdf.

B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pennington, and C. B. Thomas. 2018. Mitre att&ck: Design
and philosophy. Technical Report 1, 1 (2018), 1-36.

L. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence to Sequence Learning with Neural Networks. In Proceedings of
Advances in Neural Information Processing Systems. NeurIPS, Montreal, Quebec, Canada, 1-9.

C. Tang, N. Luktarhan, and Y. Zhao. 2020. SAAE-DNN: Deep Learning Method on Intrusion Detection. Symmetry 12,
10 (2020), 1695.

N. Wang, Y. Chen, Y. Hu, W. Lou, and Y. T. Hou. 2021. MANDA: On Adversarial Example Detection for Network
Intrusion Detection System. In Proceedings of IEEE Conference on Computer Communications (INFOCOM). IEEE,
Vancouver, BC, Canada, 1-10.

T. Yadav and A. M. Rao. 2015. Technical Aspects of Cyber Kill Chain. In Proceedings of International Symposium on
Security in Computing and Communication (SSCC). Springer, Kochi, India, 438-452.

Received 20 August 2023; revised 28 January 2024; accepted 24 March 2024

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: May 2024.

https://www.zdnet.com/article/this-is-why-the-mozi-botnet-will-linger-on/
https://www.zdnet.com/article/this-is-why-the-mozi-botnet-will-linger-on/
https://research.checkpoint.com/2017/iotroop-botnet-full-investigation/
https://research.checkpoint.com/2017/iotroop-botnet-full-investigation/
https://www.threathunting.net/files/framework-for-threat-hunting-whitepaper.pdf
https://www.threathunting.net/files/framework-for-threat-hunting-whitepaper.pdf

	Abstract
	1 Introduction
	2 Related Work
	2.1 NIDS for IoT
	2.2 Detection of Multi-step Attacks

	3 Preliminaries
	3.1 Cyber Kill Chain
	3.2 Adversarial Evasion Attacks
	3.3 LSTM-based Seq2Seq Model with Attention Mechanism

	4 Architecture of ARIoTEDef
	4.1 Design Principles
	4.2 System Architecture

	5 Formalization of ARIoTEDef
	5.1 Problem Definitions
	5.2 Solution
	5.3 Self-Evolution Strategies

	6 Experiments in the Regular Setting
	6.1 Experimental Setup
	6.2 Dataset Generation
	6.3 Impact of Probability-based Embedding
	6.4 Impact of Classifiers of Per-step Detectors
	6.5 Comparison with Other Identification Algorithms
	6.6 Impact of Self-Evolution Strategies
	6.7 Comparison with Other Attention-based NIDSes

	7 Enhanced Self-Evolution Strategies
	8 Experiments in the Adversarial Setting
	8.1 Experimental Setup
	8.2 Impact of Budget Settings of Adversarial Evasion Attacks
	8.3 Impact of the Threshold of the Sequence Analyzer
	8.4 Robustness of the Evolved Infection Detector in the Adversarial Setting i
	8.5 Robustness of The Evolved Infection Detector in Adversarial Setting ii
	8.6 Computational, Storage, and Time Overhead
	8.7 Robustness Performance Comparison with Existing Work

	9 Conclusion
	Acknowledgments
	References

