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ARTICLE INFO ABSTRACT

Keywords: Over the years, the Internet has become a field in which a small number of large Internet companies dominate
Privacy most of the Internet services. As users get used to using their services, the users’ generated content and the data
Internet

about their online behaviors are concentrated in such companies. This phenomenon, called “data consolidation”,
has become a serious problem, which makes the Internet society seek to decentralize the current Internet. The
decentralized Internet aims to (i) prevent the concentration of user data in a few giant companies like Google
and Facebook, and (ii) give users full ownership and control of their data. Various technical solutions that
address the data consolidation problem have been proposed; however, those solutions focus on somewhat
different scopes of the problem often from their limited viewpoints. The main contributions in this paper
are the following. First, we survey the solutions relevant to Internet decentralization based on the following
criteria: data consolidation, data ownership, and the privacy of user data. Second, we suggest a holistic reference
framework from a functional viewpoint, while the prior proposals in the literature handle a limited set of
requirements. Last, we seek to identify remaining research issues, considering additional requirements that
have not been addressed in the existing solutions.

Network architecture and design
Distributed networks

1. Introduction What would be the ramifications of the Internet consolidation? In

the case of search engines, Google is estimated to account for more than

The Internet has been increasingly pervasive in our daily lives,
which becomes the most critical infrastructure globally. The number of
Internet-connected devices was estimated to exceed 20B in 2019 [1].
The number of the Internet users exceeds 60% of the total population
on earth in 2020 [2].

While increasingly more people and devices are connected to the
Internet, the Internet ecosystem has shown the symptoms of the mature
markets, such as market concentration and fewer opportunities for mar-
ket entry. For instance, Facebook is dominant in online social networks;
Amazon takes almost 50% of the e-commerce market in the US. Overall,
a few giant Internet companies monopolize the Internet ecosystem [3];
this phenomenon of concentration is called consolidation (e.g., [4]).
Such a trend of power concentration in the Internet economy is not
desirable since it obstructs fair competition and degrades the soundness
of the Internet ecosystem.
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90% of the global search engine market [5]. The Chrome web browser
developed by Google is used by the majority of Internet users [6].
Thus, Google can collect users’ search queries from its search engine
and users’ browsing histories from Chrome. Therefore, online activities
of billions of Internet users can be analyzed by Google. Facebook,
including Facebook Messenger, WhatsApp, and Instagram, dominates
online social networks, whose users voluntarily post and share their
personal data [7]. Facebook can thus collect users’ posts, social rela-
tions, and chats. Many things can be done by analyzing such user data.
For instance, Google and Facebook can each find out individual users’
preferences and tastes, and hence profile each user. User profiling is
widely used in many business models, such as targeted advertising.
Indeed, the two companies account for more than 80% of the online
advertising market [8]. Such a monopoly of the Internet services leads
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to the concentration of user data, referred to as data consolidation,
which is the focus of this paper.

The data consolidation problem is recognized by many Internet
communities and civil organizations. In particular, the Internet Society
(ISOCQ) has recently published a report [4], which points out the trend
of consolidating user data as one of the most pressing issues to be
addressed. As our society heavily relies on the Internet and its services,
data consolidation leads to crucial social and economic problems.

First, the user data, one of the most valuable Internet elements,
is concentrated on a few big Internet companies. The user data is
fundamental to develop technical platforms and applications in the era
of the fourth industrial revolution [9,10]. As the oil is vital in a large
swath of the current industries, digital data will be the prime resource
for numerous innovative and disruptive online services. For instance,
data are used to feed the algorithms for machine learning and other
Al services. As the amount of the user data increases, the performance
of machine learning-based services is improved substantially. Thus,
the giant Internet companies monopolizing the user data are expected
to be the “data barons”, like the oil barons. The imbalance of the
amount of data under control also results in unfair competition among
Internet companies [4]. If most of the user data is concentrated in a few
giant companies who keep the data exclusively, other companies (in
particular, start-ups) cannot devise new or better services exploiting the
user data. It may lead to a vicious cycle that worsens data consolidation
further.

Second, the user data “belongs to” service providers as well as
users who create the data. The user data produced by a user should
be fully owned and controlled only by the user, even if the data is
used for a particular service to which she subscribes. However, for
most Internet services, the user data is (i) typically stored in the service
provider’s systems, (ii) unrestrictedly processed by the service provider,
and (iii) often transferred to third parties, while the owners usually
being unaware of such activities. Thus, Internet companies utilize user
data for user profiling, targeted advertising, training machine learning
algorithms, and so on. The problems are (i) users cannot get rewards
for their data, and (ii) users do not know how and where their data is
processed and transferred, respectively.

Third, the privacy of the online user is not protected. Every activity
or content generated by the user is handled by the above giant compa-
nies in exchange for their services provided usually for free. However,
most users are unaware that their data is under the complete control of
the giant Internet companies. Besides, the service providers may collect
not only data directly uploaded by users but also user behavior patterns
(e.g., search keywords, browsed websites) collected by their websites
and applications. This means that users’ privacy is not protected at all
if there are no countermeasures.

Recently, to address the adverse effects of data consolidation and
the concerns of privacy breaches, some legal regulations have been
enacted. EU establishes the General Data Protection Regulation (GDPR)
for data protection and privacy for all individual citizens in the EU,
which became effective in 2018 [11]. The GDPR aims primarily to
give control to individuals over their personal data and hence contains
provisions and requirements related to the processing of personal data.
Other countries also seek to protect user data through legislations like
data localization [12], which forces Internet companies to locate their
servers storing user data in the same country of users.

Aside from the regulation, the Internet technical community has
proposed many technical approaches to address data consolidation. For
instance, InterPlanetary File System (IPFS) [13] is designed to store
data in a decentralized fashion leveraging peer-to-peer networking.
Decentralized Identifier (DID) [14] seeks to remove a central authority
in issuing identifiers; in a DID document, an ID created by an entity as
well as her public key is published using distributed ledger technologies
(e.g., blockchain).

The decentralized operations on the Internet are not new at all. Note
that one of the main objectives in creating the Internet was to avoid the
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problem of centralized networking: a single point of failure [15,16].
Thus, we believe the current trend of consolidation goes against the
design philosophy of the Internet. In this sense, it is worthwhile to
review what kinds of decentralized networking approaches have been
proposed and are on the horizon.

In summary, data consolidation is widely recognized as a critical
problem in the current Internet, which both legal regulations and
technical solutions have tried to address. However, there are limi-
tations to both approaches. Legal regulations have focused on how
to prevent large companies from misusing or exporting user data;
however, they are reactive in nature and usually come into effect
after a violation has occurred. Thus, legal regulations may not be
sufficient to address the whole consolidation problem. Also, existing
technical solutions have not provided a whole picture for decentralizing
the Internet, as individual solutions have been developed to address
specific issues rather than the entire framework. Consequently, there
is currently no comprehensive framework that encompasses existing
technical solutions.

In this paper, we propose a reference framework for the decentral-
ized Internet that considers networking functions as well as user and
system requirements such as privacy protection and incentivization.
Our framework aims to address the limitations of existing solutions
by providing a holistic perspective on decentralization. Through this
approach, we try to contribute to the development of a decentralized
Internet that is more secure, available, and user-centric.

We make the following contributions in this paper:

+ We investigate the problem of data consolidation in the current
Internet.

» We survey representative technical proposals that seek to mitigate
the problems of centralized Internet. Then, we analyze which
proposal provides which functionality. We also identify which
functionality should be added or improved to move towards the
decentralized Internet.

» We suggest the reference framework in which the above functions
are classified into modules from a holistic perspective.

» Lastly, we present open issues and areas that need further re-
search. To this end, we analyze the functions of the proposed
reference framework that are not met by existing technologies.

This paper has the following structure. In Section 2, we briefly
introduce the most representative proposals in the literature on the
decentralized Internet. In Section 3, based on the analysis in Section 2,
we provide a taxonomy to analyze the decentralized applications and
systems holistically. In Section 4, we raise further research issues to be
addressed. Finally, in Section 5, we conclude with our observations and
findings.

2. Existing technical solutions for decentralization

Currently, Internet-based content services are mostly centralized,
and hence user data is concentrated on the servers of the service
operators. On the other hand, in the recently proposed decentralization
solutions, data consolidation problems are mitigated by storing user
data in a decentralized fashion. In this section, we review recent
representative solutions for the decentralized Internet.

2.1. InterPlanetary file system (IPFS)

IPFS [13] is a renowned open source decentralized storage solution
by Protocol Labs. Since its initial version in 2015, IPFS developers claim
that the current content services have the following problems: hyper-
centralization of services, inefficient content delivery, low resiliency,
etc. To mitigate these problems, IPFS is developed as a global-scale
decentralized storage system leveraging peer-to-peer (P2P) networking.

In building the global-scale P2P file distribution system, there are
at least two points to address. First, how to find the requested file
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1. Retrieves the Merkle DAG object of the
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Fig. 1. In IPFS, a file is divided into smaller chunks, and these chunks are aggregated
to the original file using the Merkle DAG. The user first requests the file then receives
its chunk IDs. Finally, the user requests each chunk by its chunk ID.

or the peer holding the file? Second, how to deal with peer churning
in P2P networking? To solve such issues, IPFS has combined some
of the successful prior mechanisms, including Distributed Hash Table
(DHT) [17-20], BitTorrent [21], and Merkle Directed Acyclic Graph
(DAG) [22].

In IPFS, a P2P network is built based on a Kademlia DHT [23],
which has been widely used in P2P distributed systems. The DHT is
a key-value store, where a key is a file identifier and a value is a
peer identifier (ID) that holds the file. As the entries of the DHT are
distributed among the participating peers, a request to locate a file will
be routed among the peers. More precisely, a file consists of one or
more chunks in IPFS, and each chunk corresponds to the entry in the
DHT: the key field is the chunk ID (i.e., a cryptographic hash of the
chunk itself), and the locator field contains the peer ID who holds the
chunk. Actually, the DHT has another kind of a record, which maps a
peer ID to its IP address.

To allow other peers to locate a chunk, a peer first has to advertise
which chunks she has. Thus, the peer has to inform its neighbors of
the corresponding DHT entries, each of which consists of a chunk ID as
a key and its own peer ID as a value. Then, these neighbors will store
the information in their own DHTs and forward the information to their
own neighbors, thus spreading the chunk information throughout the
P2P network.

When a peer first sends the query to its neighbors using the chunk
ID as the key, its neighbors respond that (i) if the neighbor has the
corresponding entry, it will return the value for the given key, (ii) if
the neighbor does not have the corresponding entry, then it will return
the information of its neighbors whose IDs are closer to the given key.
In this way, the peer can reach the destination (peer) that holds the
entry of the given key by iterating the above process since every peer
is responsible for managing the locations of the chunks whose IDs are
close to its own peer ID. Note that the above routing process delivers
not the chunk itself but the ID of the peer holding the chunk. With the
delivered peer ID, the peer can query the DHT again to find out its
locator.

After finding out the peers who hold the chunks of interest, data
exchanges occur between a requesting peer and the chunk holding
peers. IPFS proposes the data exchange protocol, BitSwap [24], to
successfully deliver the chunks between peers and further incentivize
the participation of peers. Upon the peer connection, peers exchange
the want-list of chunk IDs that they want. If a peer has a chunk in the
want-list, it will notify the other peer what chunk she has. Then, the
chunk transfer occurs. To promote the data transfer between the peers,
BitSwap takes the tit-for-tat strategy; each peer keeps the ledger that
records the numbers of exchanged bytes with others, called the debt
ratio. That is, when sending chunks, a peer may prioritize a counterpart
whose debt ratio is high (who sent more data than received), and
deprioritize one with a low debt ratio (who received more than sent)
in order to penalize free-loaders.

In addition, IPFS provides a method to represent the relations
among the chunks of a file: Merkle DAG, which is a hierarchical tree
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structure where each leaf node is a chunk. In Fig. 1, the Merkle DAG
is the root hash of the tree that consists of the three chunks. In IPFS,
a chunk ID is the cryptographic hash of the data of the chunk. Thus
the file ID is the Merkle DAG of the file, and is used to request the file.
Using these primitives, IPFS provides useful properties: (i) every chunk
is uniquely identified, (ii) a tampered chunk can be detected, and (iii)
the same chunks can be deduplicated.

Let us analyze IPFS in terms of data consolidation, ownership, and
privacy. IPFS solves the data consolidation problem by distributing data
across peers. However, compared with other schemes like Storj, IPFS
has the following shortcomings. As any user can request and replicate
any data chunk in her repository, IPFS cannot guarantee the ownership
of the data. There is no encryption and access control, which means
user privacy is not preserved systematically.

2.2. Storj

Storj [25], developed by Storj Labs, is a notable project for a
decentralized cloud storage system that aims to provide robust, reliable,
and scalable operations. However, Storj is slightly different from IPFS
in setting its goals. Storj focuses on security and performance, such as
latency, and introduces specialized nodes called the Satellite.

Whereas all participating peers are treated equally in IPFS, three
kinds of nodes exist in a Storj system: (1) A client handles user requests
(Upload/Download). (2) A storage node provides its residual disk
space and responds to user requests. (3) The Satellite’ mediates the
clients and storage nodes by discovering storage nodes that hold the
requested file, managing the reputation of storage nodes, performing
data auditing, and so on. As similar to IPFS, Storj builds a global-scale
P2P network of nodes using a Kademlia DHT. Since the DHT usually
requires multiple round trips in querying the DHT, Storj uses a caching
mechanism to reduce the latency for the (storage) node lookup process:
the Satellite caches the pair of a (storage) node id and its locator. Upon
a routing request, the Satellite will propagate the query through the
DHT in case of cache misses. In this way, Storj can reduce the overall
latency in finding nodes.

Regarding the data availability, while IPFS relies on a simple repli-
cation strategy, Storj relies on more sophisticated techniques, namely
the Reed-Solomon [26] erasure coding and a reputation mechanism.
Erasure coding [27] is a coding technique used for resilience to failures:
when a file is erasure-coded, it outputs n chunks, where only k out of
n chunks are required to restore the original file. In Storj, each of the
n chunks may be hosted in different storage nodes. Thus, the original
file may be recovered in the presence of node failures since it does not
require all of the n chunks. Also, it can enhance the overall latency
since the Satellite can choose better storage nodes (e.g., lower round
trip times). Note that when splitting a file into chunks for the erasure
coding, the chunks are encrypted as well.

Uploading/downloading operations of Storj are illustrated in Fig. 2.
The client first requests uploading/downloading a file to the Satellite.
In the case of uploading, the Satellite finds and returns the set of storage
nodes based on the requirements of her requests, such as the residual
disk space and latency. Similarly, it returns the set of nodes holding the
requested chunks to the client in the case of data retrieval. The Satellite
chooses not a single but a number of storage nodes so that the chunks
of the same file can be stored across different nodes.

While IPFS relies on BitSwap to incentivize nodes, Storj has a
network-wide reputation system since the Satellite keeps track of the
reputation of each storage node. A storage node’s reputation will be
degraded if it behaves badly: failing data audit, ° failing to return the
requested data, or failing uptime checks. If a node continuously fails

2 A group of multiple control nodes is collectively called the Satellite.
3 In Storj, the Satellite periodically audits storage nodes to check whether
they keep the chunks in its storage.
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The Satellite

Storage nodes

| | Chunk 1
. Chunk 2

- 3. Erasure-coded chunks are
Client | Chunk 3

distributed over storage nodes

Fig. 2. Data uploading operations in Storj are illustrated. Thanks to the Satellite and
the erasure coding, Storj can enhance its delay performance and availability compared
to IPFS.

to comply, it will no longer be selected to host the data chunks, and
stored chunks will be moved to other storage nodes, thus providing
fault-tolerance and increasing data availability.

In summary, Storj solves data consolidation like IPFS. Storj achieves
better performance than IPFS by introducing the Satellite; however, it
compromises the decentralization more or less. Also, Storj guarantees
the data ownership through access control by encryption. On the other
hand, Storj does not fully support user privacy since the Satellite can
monitor user requests, while user-generated data can be protected
through encryption.

2.3. Solid

Solid [28] separates data from applications on the web, aiming to
empower users to have data ownership. One of the rising concerns of
current online social networking (OSN) services is data consolidation.
Every data created by a user is stored in the service providers’ private
storage, leading to the service provider lock-in [29]. To mitigate such
data consolidation, Solid logically separates user data from service
providers by introducing the concept of a Personal Online Datastore
(POD). Thus, in Solid, only users own their data, while OSN service
providers cannot store user data. A Solid application receives user data
from other users’ PODs when user data is needed.

The Solid ecosystem consists of three kinds of entities: users, PODs,
and Solid applications. A user is a client who owns her data and uses
OSN services. A POD is a logical storage for each user, in which each
user’s data is stored. A Solid application is an OSN application that runs
on the application user’s POD that reads or writes data from the PODs
of data owners.

More specifically, a user’s POD stores every object belonging to the
user. Note that a POD is an abstraction of logical storage; any physical
method of storing data (e.g., cloud storage, decentralized storage, users
device storage, etc.) can be used. In the existing OSN service structure,
user data is stored in the service provider’s storage. Thus, when a user
requests data from another user, the application authorizes the user
and returns the requested data if authorized. However, in Solid, since
user data belongs to each user’s POD, the operation of fetching the
user data differs significantly. When a user requests data of another
user (or her POD) through the Solid application, the application can
access the requested POD only if the requested POD authenticates the
requester and authorizes the request. Thus, Solid employs an access
control method for PODs.

Solid authenticates a user’s identity using a WebID [30], a globally
unique decentralized identifier in the form of a URI. A WebID indi-
cates the location of a public WebID profile that contains the user’s
information, e.g., her public key, name, and nickname. Solid uses the
WebID-TLS protocol as its primary authentication mechanism by which
a user presents her signature to another user’s POD through a TLS
connection. In this way, the POD verifies a requester’s identity by
matching the signature with the public key stored in her WebID profile.
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Fig. 3. Solid operations are illustrated with a single POD. A user stores her personal
data in her POD, which can be accessed by decentralized social applications depending
on the corresponding ACL.

A user’s POD controls the accesses for her objects in her POD
based on the authorization policy specified by herself. More specifi-
cally, users can control accesses to objects in their PODs based on the
Web Access Control (WAC) mechanism. WAC is a decentralized access
control mechanism allowing users to access the objects with different
scopes based on the access control lists (ACLs). The ACL is a set of
authorization statements describing who can access what. Note that the
ACL is also an object in a POD.

Fig. 3 illustrates the Solid operations with a single POD. Decen-
tralized social applications on the Solid platform offer services by
accessing users’ data stored in PODs only with their owners’ grants.
To bridge distributed pieces of data, Solid represents data as Linked
Data [31]. In Linked Data, every data object has its identifier, e.g., URL,
and the object can be connected to other objects by referring to
their identifiers. For example, assume that Alice’ photo identified by
https://alicepod.solid/photo/summer is stored in her POD and Bob’s
comment, with the identifier https://bobpod.solid/comments/12345,
to Alice’ photo is stored in Bob’s POD. The relation between the photo
and the comment can be represented by setting the URL of Bob’s
comment as one of the attributes of her photo.

To sum up, Solid addresses data consolidation by introducing PODs.
Solid also solves the data ownership problem based on the WAC, which
allows the data owners to control who can access what. User privacy
is not fully supported. While the privacy of User-Generated Content
(UGQ) is preserved by giving full control of data to its owner, users’
online behaviors can be revealed since the users send their requests to
Solid applications.

2.4. Mastodon

Mastodon [32-34] is an open source project for decentralized OSN
services with microblogging features. Over the last decade, popular
OSN services began to provide advertising services based on user data
to meet their business model. This caused the customer’s trust problem
with the OSN services. The main focus of Mastodon is to provide a
user with the control of her content free from sponsored content or
manipulation of content locations by service administrators [33].

To provide decentralized OSN services, Mastodon constructs two
layers: (i) client-to-server and (ii) server-to-server. For communications
within each layer, the ActivityPub protocol [35] is used, which is an
open protocol for decentralized OSN services. First, a user can create
and run her own Mastodon server with her own set of rules. Here,
the server created is called an instance, and the user who created the
instance is referred to as an instance manager. In order to receive the
Mastodon service, users register their accounts with the instance. Users
who register themselves with the instance are referred to as clients. In
an instance, multiple clients register their accounts, and they can follow
one another to see other’s messages. In this way, client registration,
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Fig. 4. The operation of Mastodon is illustrated. A user registers her account with the
Mastodon instance, where the combination of the username and the instance is globally
unique. Therefore, each user is identified by her name, by which message exchanges
between users occur.

follow-up between clients, and exchange of messages within a single in-
stance occur within (i) the client-to-server layer by using ActivityPub’s
client-to-server protocol. With the above operations, clients can ex-
change messages from one another only within the same instance. For
global federated interworking, communications between instances are
required. Mastodon guarantees the global reach by relaying messages
between clients registered in different instances at (ii) the server-to-
server layer by using ActivityPub’s server-to-server protocol. Due to
the above architecture and its operations, user data in Mastodon is not
consolidated on a single server operated by a single administrator. User
data is decentralized to multiple instances that anyone can operate.

More specific operations are illustrated in Fig. 4. An instance has
a globally unique name, and a client has a locally unique name
within the instance. Thus, by combining the username and the in-
stance name (e.g., username@instance-name), the client has a globally
unique name. Each client has an inbox for incoming messages from
other clients and an outbox that posts its outgoing messages. Note
that a client, her inbox and her outbox each have URL addresses
(e.g., https://social.example/alice/outbox is for Alice’ outbox). These
addresses comply with ActivityPub, which defines the format of se-
rialized linked data based on JSON [36,37]. In Fig. 4, there are
Alice@instance 2 and Bob@instance 4, who wish to send and receive
messages. Alice@instance 2 posts her message (to Bob) through her
outbox. This message is called a “note”. The note contains the in-
box URL of the receiving client. In this example, the Bob’s inbox
URL is written in the note. The note in the Alice’ outbox is sent
to instance 2 with which Alice has registered, and this operation oc-
curs at the client-to-server layer. Next, instance 2 receives the note
from Alice, and then assigns the note an id in the form of a URL
(e.g.,https://social.example/alice/posts/{post id}), then checks the in-
box URL of the client who will receive the note. In this example, the
note contains the inbox URL of Bob, and thus it is delivered to instance
4 through the server-to-server layer. Finally, instance 4 delivers it to
Bob’s inbox through the client-to-server layer.

In summary, in Mastodon, anyone can run an instance, and in-
stances connect to one another through the ActivityPub protocol to
provide a global OSN service. Hence, user data is decentralized to
instance managers running Mastodon instances. Note that user data
is exchanged and managed by instance managers, and thus users do
not have complete data ownership. User privacy is not specifically
considered in Mastodon.

2.5. Dat

Dat [38] is a file sharing protocol among peers over a distributed
P2P network. Existing solutions for sharing data among multiple users
have some constraints. For example, centralized cloud storage services
such as Dropbox and Google Drive require users to store their data
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in the service providers’ infrastructures, which leads to the issues
of vendor lock-in and user privacy leakage. In addition, delivering
data over an HTTP or FTP connection is not suited for collaborative
applications since those protocols lack the built-in support for version
control and synchronization. Therefore, the Dat protocol is designed
to support sharing files with synchronization and version control for
distributed and collaborative applications.

The main design goals of Dat are collaborative synchronization
and version control. Thus, DAT seeks to achieve (i) content integrity,
and (ii) decentralized mirroring. Content integrity means being able
to verify that an object has not been tampered nor modified from the
original one. When multiple users work on the same object, content
integrity must be ensured because it can be forged or unintentionally
altered. Decentralized mirroring means that users who want to share
the same object can automatically discover each other and exchange
the object in a swarm. Decentralized mirroring is necessary since users
who work on the object must view the same version simultaneously.

Every object in Dat has its own URL that consists of a protocol
identifier, a public key, and an optional suffix. The protocol identifier of
Dat is determined as dat://, which makes Dat URLs easily recognizable.
A public key is unique to the corresponding object and generated by its
publisher. A user discovers other peers who have the object and verifies
its integrity by using the publisher’s public key. The optional suffix is
used to identify additional data within the URL (e.g., file path).

To retrieve an object, a user submits its URL that includes its public
key; Dat calculates a discovery key by applying the BLAKE2b hashing
function [39] to its public key. Then, the discovery key is broadcast
via a network to find any peers who hold the corresponding object
or are interested in the object. Peers having the data respond to the
user with their IP addresses and port numbers. After finding peers, the
user selects a sender among peers and establishes a TCP connection.
The sender first sends a feed message, which contains the discovery
key and a random value of the nonce. The nonce is used to encrypt
subsequent messages with the XSalsa20 stream cipher [40]. XSalsa20
takes the public key in the URL and the nonce to generate a keystream,
which is XORed with plaintext data. After the initial feed message,
the sender and the user exchange handshake messages to determine
exchange rules (e.g., whether to send ACK for each chunk). Then, they
exchange chunks by exchanging want and have messages.

Dat provides content integrity by using cryptographic hashes of
objects. An object in Dat consists of multiple variable-sized chunks, and
each chunk of the object has a corresponding hash. There is a parent
hash that verify the integrity of two child chunks, which iteratively
forms a tree structure. The data publisher signs the root hash with
the secret key corresponding to the public key in the URL. Therefore,
anyone who knows the public key can verify the integrity of the object.

Dat also achieves decentralized mirroring by broadcasting a discov-
ery key. When a user broadcasts a discovery key of the object she wants,
other peers in the network can report that they are also interested in
the same object. Thus, a peer holding the object sends it to not only
the user who broadcasts the discovery key, but also other peers who
express interests in it.

As an example, Fig. 5 shows how peers share an object of interest
using Dat. First, Peer 1 requests an object by its URL that contains its
public key. Dat calculates the discovery key by hashing the public key
and broadcasts it via the network. If there are other peers interested in
the same object, they also report/broadcast to the network with their IP
addresses. Then, Peer 4, who has the object, responds to Peer 1 and the
other peers who reported their interest. Finally, peers in the network
share the object after exchanging data.

From the perspective of the decentralized Internet, Dat can mitigate
the data consolidation problem since it distributes user data among
peers in the network. However, the data ownership cannot be sup-
ported since every peer can access an object without the permission
of its owner. Also, user privacy is not systematically protected since an
object is not encrypted. As a user identity is anonymized by using only
her public key, anonymization is supported in Dat.
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Fig. 5. A flow of the Dat protocol is illustrated. A user discovers peers that hold the
object of interest using a discovery key. Then, it exchanges data after negotiating with
the peers.
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Fig. 6. The operations of Beaker are illustrated. The Beaker browsers running on peers
treat a website as a group of files. Thus, websites can be seeded by Beaker-installed
peers. The Beaker browser leverages Dat as its underlying exchange protocol.

2.6. Beaker

Beaker [41] is an open source web browser for the decentralized
Internet, developed by Blue Link Labs. They develop a decentralized
peer-to-peer web browser, leveraging Dat [38] as a base protocol.
Beaker allows a user to self-publish a website without setting up any
web server and uses Dat to replicate an entire website.” That is, an
original server publishes a website, and then any peer can seed the
website (like mirroring) if she wishes to do so. Thus, a website can
be accessed as long as at least one peer can provide its files even if the
original server is not available.

Fig. 6 illustrates how Beaker works. First, peers build a distributed
P2P network by installing Dat. As a website is a set of files in Beaker,
peers can seed websites if they wish to do so. In Fig. 6, Peers 1, Peer 2,
and Peer 4 use Beaker (Notice the Beaker icon). Peer 1 seeds websites A
and B, Peer 2 seeds websites B and C, and Peer 4 seeds website D. Thus,
if Peer 1 or Peer 2 tries to access website D, she can browse website D
by getting the corresponding files from Peer 4 using Dat.

In summary, the Beaker browser operates on top of Dat and basi-
cally has the same drawbacks as Dat. Websites (or their files) can be
distributed across multiple peers, which helps to mitigate the concen-
tration issue. However, it cannot address the ownership and privacy
issues.

2.7. YaCy
The current search engine market is monopolized by Google, which
leads to the concentration of user data (e.g., search keywords). There

is also a possibility that companies monopolizing the search engine
market might manipulate the search results (e.g., promoting sponsor

4 Note that a website is deemed a set of individual files here.
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Fig. 7. The operations of YaCy are illustrated. Each peer crawls websites and makes
its own indexes, which populate the DHT for keywords. When a user sends a query,
YaCy looks up its DHT to find out the IP addresses of the peers (that hold the relevant
URLs in their indexes). Finally, the user connects to the peers to retrieve the URLs.

sites). A decentralized search engine, YaCy [42,43], is developed as
a countermeasure of centralized search engines. To prevent search
engines from dominating the indexes of web pages and providing users
with biased results (e.g., advertised or censored links), YaCy relies on
decentralized crawling and indexing.

To help you understand Yacy, let us give the background of search
engines. A search engine has three main functions; (i) crawling, (ii) in-
dexing, and (iii) ranking [44]. Search engines crawl web pages through
a crawler. These crawled web pages are pre-processed (e.g., natural
language processing) and indexed for easy retrieval (e.g., inverted
indexes). When a user’s search query comes in, the query and the
relevant indexes are put into a ranking algorithm to score the web
pages. The user receives a list of web pages ranked by this score.

In the existing search engine, a single service operator performs
crawling and indexing. Therefore, web pages and index information are
consolidated to a specific service operator, and user data (e.g., search
terms) are also concentrated. In addition, ranking results are also pro-
vided through the consolidated indexes; thus, search service operators
might inexplicably or intentionally manipulate them.

To solve the consolidation problem in search engines, YaCy per-
forms decentralized crawling and indexing. Fig. 7 illustrates the opera-
tions of YaCy. First, YaCy configures a P2P network of YaCy peers, who
collectively maintain a search engine in a decentralized fashion. Each
peer crawls web pages independently (step (1) in Fig. 7), and then pre-
processes and indexes the crawled web pages. Thus, there is no single
search engine service operator. Crawled web pages and their indexes
are stored and managed by each peer. To globally share the information
of crawling and indexing of each peer, each YaCy peer shares its index
information to the YaCy peer network through a DHT. For example, if
an inverted index is constructed based on a word, each peer indexes
and shares (words, web pages) pairs, and the globally shared DHT is
populated using each word as a key. Thus, in the DHT, words serve as
the keywords to the relevant web pages (i.e., their URLs) as shown in
step (2) in Fig. 7. After configuring the DHT for words, the YaCy P2P
network can answer search queries.

When a user sends a query as shown in step (3) in Fig. 7, The query
is sent to the P2P network through the YaCy search engine. Then the
P2P network finds the peers’ IP addresses holding the relevant URLs
from the DHT (step (4)). Finally, the user connects to the peers to
retrieve the URLs (step (5)).

In summary, the indexes and web pages are decentralized among
YaCy peers, which addresses the problem of data consolidation. YaCy
can also protect user privacy by preventing users’ search histories from
being exposed since search keywords are forwarded among peers in the
form of hash values. However, keywords may be inferred from the URLs
in the reply. Also, YaCy does not support the data ownership.
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Fig. 8. The operations of Blockstack are illustrated. The blockchain maintains the hash
of the zone file of every user (under her name), and the Atlas network contains the
zone file, which includes the location of the user’s data locker in Gaia.

2.8. Blockstack

Blockstack [45,46] aims to develop a decentralized computing ar-
chitecture that provides a full-stack alternative to traditional cloud
computing. Blockstack redesigns the application layer of the current In-
ternet and provides a new infrastructure for decentralized applications;
applications built on Blockstack enable users to own and control their
data. The Blockstack architecture provides a framework of decentral-
ized computing without any centralized entity, allowing users to have
sovereignty on their names and storage spaces.

To provide the full stack for decentralized computing, Blockstack
consists of four parts — (i) Stacks Blockchain, (ii) Gaia, (iii) Authen-
tication/authorization, and (iv) Libraries & SDKs. When a Blockstack
application tries to retrieve an object by using its name and the user-
name of its owner, the application first accesses the Stacks Blockchain.
The Stacks Blockchain enables a user to register and control her user-
name linked with pointers to her private storage, which is called data
locker(s). More specifically, the Stacks Blockchain has two sublayers:
a blockchain [47] and the Atlas network. The underlying blockchain
stores the pairing information between the username and the pointer
(hash) of her zone file, which includes the locations of her data lockers.
The zone file of every user is stored in the Atlas network, and the
Atlas network returns the corresponding zone file when the hash of
a zone file comes in as a query. Note that to find a location of a data
locker, Blockstack uses only the corresponding username. The name of
an object (in the data locker) is used when reading/writing the object
in the data locker in Gaia. Gaia is a storage system that allows a user
to deploy her data locker® and control her data. The user can select
any storage system (e.g., a cloud provider, local storage, or remote
storage) for her data locker. User data is encrypted and signed with
user-controlled keys; thus, although a cloud provider manages the data
locker, it cannot read the data. Thus, authentication/authorization is
required to read/write data to the user’s data locker. The Authenti-
cation protocol in Blockstack is based on public key cryptography. A
user authorizes an application by logging into the application with
her username to give the application the credential to read/write her
data (with decryption/encryption, respectively) under her username.
For this, the user uses her private master key to generate application-
specific keys, which are sent to allow the application to encrypt and
sign her data. Also, the user’s credential can be used to assure other
users that the application requests their data on behalf of the user.

5 A data locker is similar to a POD in Solid.
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ADID did:example:123456789abcdefghi

{
"@context": "https://w3id.org/did/v1",
"id": "did:example:123456789abcdefghi",
"authentication": [ {
"id": "did:example:123456789abcdefghiftkeys-1",
"type": "RsaVerificationKey2018",

ADID "controller": "did:example:123456789abcdefghi",
Document "publicKeyPem": "-----BEGIN PUBLIC KEY.. END PUBLIC KEY-----\r\n" }],
"service": [{
"type": "ExampleService",
"serviceEndpoint”: "https://example.com/endpoint/8377464"
H
}
-

Distributed
Network

Fig. 9. The examples of a DID and its DID document are shown. The DID consists of a
URL scheme identifier, the name of the DID method, and the method-specific identifier.
The DID is used to fetch its DID document that has information about the DID subject,
such as its public key and service point.

Blockstack also provides Libraries and SDKs to help to develop the
Blockstack applications.

The operations of a user’s application that wishes to retrieve an
object of another user (say, her id is example.id) are illustrated in Fig. 8.
Initially, the application retrieves the hash of the zone file from the
blockchain with the object owner’s name (example.id). The application
then requests the zone file to the Atlas network with the hash of the
zone file. On receiving the zone file, the application verifies its integrity
by comparing the hash of the received zone file with the one from the
blockchain. The application then finds the Gaia URL (of the data locker)
from the zone file and finally retrieves the object from the data locker
in Gaia.

In summary, Blockstack addresses the consolidation problem by
storing user data in a user-controlled data locker, not in the stor-
age of a service provider. Blockstack also solves the data ownership
problem since applications cannot access user data without its owner’s
permission. However, user privacy is not perfect. While the user data
is privacy-preserved since the Gaia storage system does not allow
unauthorized access, users’ online behaviors, such as requests to obtain
zone files, can be observed by the peers in the Atlas network.

2.9. Decentralized identifiers (DIDs)

Decentralized Identifiers (DIDs) [14] defines a new type of iden-
tifier to provide verifiable, decentralized digital identities. It is being
standardized by W3C and Decentralized Identity Foundation (DIF) with
goals such as security and discoverability. DIDs is motivated to address
the drawback of the centralized authority like DNS, i.e., a single point
of dependency/failure; instead, DIDs relies on distributed ledger tech-
nologies like a blockchain for authenticating identifiers. DIDs provides
a specification by which every entity can generate her own identifier
or verify other entities’ identifiers in a decentralized fashion. Note that
“DIDs” refers to either a specification or a plural of a DID, which is an
instance of an identifier.

As shown in Fig. 9, a DID consists of the URL scheme identifier
(did), the method (e.g., example), and the method specific identifier
(e.g., 123456789abcdefghi). Thus, a DID indicates the corresponding
DID document that describes a DID subject. Examples of the attributes
in the DID document are the subject’s public key and service point.
Note that the DID is also contained in the DID document as one of the
attributes. Based on the relations among a DID, its DID document, and
its DID subject, any system that wants to use DIDs should specify how
to create, read, update, and deactivate DIDs in the system, which is
called a DID method.

With DIDs, any entity can be authenticated by using cryptographic
proofs, which is illustrated in Fig. 10. For instance, a DID subject (say,
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Table 1

Summary of the prior solutions.
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Name Objective Key features Problem addressed
Data Data User
consolidation ownership privacy
IPFS [13] Distributes files over multiple nodes — DHT: Node info. (Node ID, address) and the chunk info. o X X
(CID, chunk location) are stored
- Linked Data: Data chunks are linked based on Merkle DAG
— Bitswap: Measures the trustworthiness of peers
Storj [25] Distributes files over multiple storage — The Satellite: Provides functions of locating, access control, O (0] A"
nodes securely and so on
— Erasure coding: Increases availability
— Reputation system: Evaluates the trustworthiness of nodes
Solid [28] Separates user data from applications — POD: A logically personalized and distributed storage (0] o ab
and gives the full control of data to its which is fully controlled by the owner
owner - Linked Data: Every resource in Solid is represented by
Linked Data principles
Mastodon [32] Provides users with control of the — Server-to-server layer: Global federation between (server) o X¢ X
content distribution channels free from instances by relaying messages between clients registered
sponsored contents with different instances
— Client-to-server layer: Client registration, relationships, and
exchange of messages within a single instance
Dat [38] Shares files on a P2P network with — Content integrity: Any entity can perform the verification (0] X ad
functions of synchronization and of a content object by the Merkle tree
versioning — Decentralized mirroring: Peers can discover each other and
exchange data in a swarm
Beaker [41] Shows users the decentralized Internet — Dat support: Beaker can use Dat, a decentralized file [0} X X
with supporting decentralized functions sharing protocol
— Seeding web pages: A user can seed web pages as a peer
YaCy [42] Distributes crawled web pages (and their — Decentralized crawling: Each peer crawls web pages [0} X o
indexes) over multiple peers - Decentralized indexing: Each peer creates indexes for its
own crawled web pages
Blockstack [45] Provides a full-stack framework for — Stacks blockchain: Stores usernames which is linked with (¢] [¢] A
decentralized computing pointers to their data lockers
— Gaia: A storage system that allows individual users to
make their private data lockers and control their own data
- Authentication/authorization: allows to read/write data
from data lockers for authenticated users only
DIDs [14] Supports individuals to create their own - DID document: Describes the attributes of a DID of 08 Xt
identifiers without central authorities - DID method: System-specific way of creation, retrieval,
update and deletion of DIDs
Sovrin [48] Provides an ID system based on DIDs — Attributes: Information about the subject (0] o (o}

— Claims: A digitally signed assertion about particular

attributes

— Disclosure: A tailored claim that does not disclose
unnecessary information

aThe Satellite can observe user’s data upload/download requests; thus Storj cannot fully guarantee user privacy.

bSolid assures that UGCs are protected by any unauthorized access; however, user’s online behaviors are revealed since users send their requests directly to social applications.

¢User machines may store user data; however, the main storage of user data is the (server) instance with which she is registered.

dSimple anonymization is supported in Dat since a user uses the hash value of her public key as her pseudonym.

¢Users’ requests to the blockchain can be observed by the peers of the Atlas network.

fIn case of DIDs, we considered IDs as a kind of data. DID documents are stored in distributed networks; thus, they are not consolidated.

8A user who wants to create her own DID can generate her DID document on her own.

hA DID just represents the identity of the user, and user privacy depends on an external solution that utilizes DIDs.

iSovrin provides a way to hide particular attributes in a claim, and private attributes are not recorded in the public ledger.

a student) that wants to prove her identifier sends her DID with a proof
of her identifier (say, a signature on a challenge message) to a relying
party (say, a university authority). On receipt of the identifier proof,
the relying party asks a DID resolver [49] to fetch a DID document
from the blockchain. Then, the relying party verifies the proof by using
the public key in the DID document, which finishes the authentication
process.

Note that DIDs addresses the issues related to IDs rather than user
data. DIDs addresses the “ID consolidation” issue since there is no
central entity in a DID system, and the DID documents are stored in
distributed networks such as the blockchain. DIDs also solves the ID
ownership problem; anyone can generate and register her DID docu-
ment. However, whether DIDs can preserve ID privacy or not depends
on the method in DIDs. If the method allows an ID to be generated in
an anonymized fashion (e.g., public keys), there is no ID privacy issue.

2.10. Sovrin

Sovrin [48] is a self-sovereign identity system with its catchphrase
— identity for all. The Sovrin system is primarily motivated by the two
following problems: (1) the lack of a standardized format to describe
identities and (2) the standardized way to verify the identities.

To address the above issues, the Sovrin system leverages (1) the
DIDs to describe identities and (2) a public blockchain to authenticate
identities. For each DID, there is a pair of a private key and a public
key. Thus, an entity can generate a verifiable claim by generating her
digital signature, and anyone can verify the claim with her public key
in the corresponding DID document.

In Sovrin, there are several properties for privacy by design. First,
Sovrin aims to mitigate correlation attacks for a particular entity. To



T.T. Kwon et al.

‘ DID H DID Document H DID Subject (Service Endpoint) ‘
* DID documents are
DID registered in blockchain
Creation
l)ID """""" Blockchain (BitCoin, Ethereum, Sovrin, ...) [
Usage 3. Retrieves the 4. Returns the

DID document DID document

‘ DID Resolver

5. Returns the
DID document

2. Retrieves the
DID document

1. Presents her DID with
its cryptographic proof

DID Subject
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this end, an entity generates different public keys for different entities
(say communication counterparts). For example, Alice has one public
key with her bank and another with her company. In this way, an
adversary cannot infer easily with whom Alice has relations. Second,
Sovrin provides a method to specify an entity’s private attributes in the
ledger. This is supported by allowing the entity to store the hash values
of her private attributes in the ledger. With this property, she can prove
the integrity of her private attributes without revealing them to the
public. Third, an entity can control how much data is shared in a par-
ticular context, called selective disclosure. Selective disclosure uses the
zero-knowledge proof with attribute-based credentials for trust [50].
For instance, a local authority can generate a claim about only the
gender of Alice with its signature while hiding the other information
of Alice in the claim.

In Sovrin, the consolidation issue of IDs is addressed since IDs are
stored in a blockchain. Sovrin also guarantees the ownership of IDs,
attributes, and claims since they can be generated in a decentralized
fashion by individual users. Sovrin enhances user privacy by the three
mechanisms: using different public keys, storing only the hashes of the
private attributes in the ledger, and supporting hidden attributes.

2.11. Blockchain-based approaches

As blockchain technologies emerge as the solution to the problem of
Internet consolidation, they have attracted much attention of academia
and industry. Blockchain has been widely adopted as the foundation
for decentralization techniques, as it offers security, automation, and
availability [51].

In [52], the authors proposed a privacy-preserving pricing system
for the smart grid. They achieve this by designing a lightweight dis-
tributed cloud storage architecture that uses a dual blockchain. This
storage system stores encrypted data and employs the dual blockchain,
which consists of private and public. This way, they ensure user pri-
vacy, reduce costs, and provide security.

[53] proposed Blockchained on-device Federated Learning (FL),
which addresses two key limitations of traditional FL: (i) the depen-
dence on a central server and (ii) the lack of incentives for local
devices to contribute their computing resources. Instead of the central
server, the proposed approach utilizes a blockchain, by which miners
verify and distribute the local model updates from participating de-
vices. Furthermore, the devices are incentivized to participate in the
FL process through proportional rewards based on the sizes of their
training samples.

[54] presents a parking-space recommendation platform that pre-
serves user privacy. It achieves the privacy of users while provid-
ing the benefits of other parking-space sharing services by employing

Computer Networks 234 (2023) 109911

Table 2
Categorization of prior solutions.

Category Name Differences & limitation

IPFS +Fully distributed with DHT
+Long latency due to DHT

Distribute storage

Storj «Decentralized, but Satellite
intermediates
- Single point of failure

Solid «Full ownership of user data

Social network .. .
+Limited to social network

Mastodon «Block unwanted content
*No ownership, no access control
- Dat +File transfer protocol
Application .
+No ownership
Beaker « Distributed browser
*No ownership
Yacy +Decentralized search engine
+Long latency due to DHT
. DIDs +ID scheme without central authorities
Identifier . .
+Limited to ID representation
Sovrin +ID system based on DID

«Deals with IDs only

anonymous authentication, anonymous payment, and reputation rat-
ings. The authors achieved this goal by utilizing blockchain and existing
privacy-enhanced cryptographic tools.

In [55], the authors proposed an advanced zero-knowledge ledger.
They replaced their previous range-proof techniques with improved
inner product-based zero-knowledge proofs, which are the most ef-
ficient range-proof techniques available. This technique makes the
zero-knowledge ledger perform faster than the existing ones since
multiple range-proofs can be integrated into a single range-proof.

2.12. Summary: Existing solutions

So far, we have introduced representative studies proposed for the
decentralized Internet. Since there have been already several surveys
on blockchain [56-61], we focus on solutions that are not blockchain-
centric in this paper, which are summarized in Table 1.

We also categorized the existing solutions in Table 2 for the pur-
poses of comparison and analysis. While the solutions had been de-
veloped independently by different developers, they can be classified
by the problem that each technology aims to address. Both IPFS and
Storj propose a method of storing files in a distributed fashion, but
they differ in their approaches. IPFS uses the DHT for locating and
delivering files in networks, while Storj uses the DHT with special
nodes called the Satellite. Thus, in case of Storj, the Satellite has
the issue of a single point of failure. By contrast, IPFS does not face
this issue, but it has the DHT-inherent performance problem [62].
Solid and Mastodon both offer distributed social network services, but
they differ in their main purposes. Solid provides a social network
platform that allows users to own and manage their data. Solid seeks to
fundamentally address data consolidation, ownership, and user privacy,
but it provides social networking services only. On the other hand,
Mastodon’s main purpose is to allow users to block unwanted content
like advertisements. Note that there is no access control (and hence no
ownership) in Mastodon. Dat is an application protocol for distributed
file sharing, and Beaker is a browser that utilizes Dat to provide
distributed web browsing. However, both Dat and Beaker do not offer
access control or ownership. YaCy is a decentralized search engine that
uses a DHT, which may result in longer response times compared to
centralized search engines. DIDs and Sovrin primarily focus on the
technical aspects of distributed digital identifiers. While the above
proposals address some particular aspects of Internet decentralization,
Blockstack aims to address a broader range of problems by changing
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Fig. 11. A reference framework of the decentralized Internet is illustrated. The five
modules on the right are related to data plane functions, such as data exchange between
nodes. The two modules on the left are responsible for the incentivization and ID
management.

the current cloud-based environments to distributed environments. To
be brief, Blockstack offers data ownership and solves data consolidation
by leveraging blockchain technologies.

3. A reference framework for the decentralized internet

In the previous section, we have reviewed various technical so-
lutions towards the decentralized Internet. However, each solution
focuses on different problems, usually from a limited point of view.
That is, none of the above solutions consider the decentralized Internet
from a holistic viewpoint.

In this paper, we seek to draw a reference framework for the decen-
tralized Internet to address the data consolidation problem. To this end,
we first investigate which functions are needed for the decentralized
Internet by analyzing the designs of the existing solutions. Then we
classify the functions needed for the decentralized Internet into seven
modules; “Locating & Delivery”, “Strategy”, “Metadata”, “Privacy”,
“Application”, “ID”, and “Incentivization” as shown in Fig. 11. The
seven modules will be detailed one by one. After that, we identify
functions not covered by the prior solutions; we believe they should
be added in the reference framework for the full-fledged decentralized
Internet. We also discuss the functions that can be technically improved
from the prior solutions in Section 4. Finally, in Table 3, we summarize
the functions, the research issues, and the existing solutions for each
module.

3.1. Locating & delivery

We refer to a resource as the storage space (of a participating node).
Thus, a decentralized application requires a method to locate such
resources. Since participating nodes are not managed in a centralized
manner, we need the “Locating & Delivery” module that performs
locating resources to store and to retrieve objects (or their chunks).
Henceforth, we assume that the unit of storing or transporting an object
is a chunk. When a client wishes to upload or download an object, the
role of the “Locating & Delivery” module is to perform the storing and
retrieval of its chunks. To support the chunk distribution and retrieval,
“Locating & Delivery” should support the following functions.

» Object locating: In a distributed P2P system, there should be
a mechanism to find the node(s) holding a requested chunk;
furthermore, the system needs to support the method to find the
node’s location based on the node’s identifier.

Object delivery: When a client has retrieved a set of nodes for
the chunk distribution or retrieval request, connections between
the client and the nodes (selected by the system or client) need
to be established, followed by data transmissions.

Object integrity: In a current centralized web, there are mech-
anisms to authenticate servers such as HTTPS, and the authenti-
cated server is believed not to act maliciously. However, in dis-
tributed systems, any node can join the network; thus, there is no
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guarantee that chunks from nodes are correct or not modified. A
system hence requires mechanisms to guarantee the object/chunk
integrity.

The functional requirements of “Locating & Delivery” are satisfied
by many systems deployed in the field, such as IPFS and Storj. For the
object delivery, most of the existing solutions rely on TCP/IP. In the
case of the data integrity, IPFS utilizes the Merkle DAG, as described
in Section 2.1.

3.2. Strategy

Nodes participating in the P2P network may join or leave at
will [63], which is called “churning”. Thus, we cannot assume that
individual nodes are always up and running. In addition, some nodes
may be malfunctioning or malicious. Thus, it is crucial that a client can
retrieve an object of interest even if a certain number/portion of nodes
fail. The “Strategy” module is responsible for resilient operations.

To improve the availability in “Strategy”, we identify the following
functions: object/chunk replication, entrance control, and reputation
management.

» Replication: The first approach is to make multiple copies (of a
chunk/object), which are distributed across different nodes. Even
though some of the copies are unavailable, the others can be
accessed.

Entrance control: Another direction is to require a node to make
some commitment before joining the system. In this way, it is
not easy for impulsive and unreliable nodes to join the system,
or for attackers to launch Sybil attacks [64]. However, if a node
that passes the entrance control fails or misbehaves, the following
function will handle such nodes.

Reputation management: It is important to run a reputation
mechanism [65,66] that continuously evaluates the reliability of
nodes in the P2P network. The possible factors in evaluating a
node’s reputation are its uptime, the success probability of chunk
delivery, delivery throughput, protocol conformance, and so on.
When the client selects a node to store/retrieve a chunk, she (or
the system) will assess the reputation levels of the node.

One of the popular replication approaches is the erasure cod-
ing [67], which Storj adopts. For the entrance control, in Storj, a new
node is required to find an input for a particular hash output. In SAFE
Network [68], a newcomer can carry out only simple jobs until being
upgraded to do advanced jobs. The rationale behind such entry barriers
is that a node that has spent its computing powers or similar resources
is less likely to deviate from the normal system operations. For repu-
tation management, in IPFS, every node’s reputation is evaluated in a
distributed manner based on the tit-for-tat strategy; each node records
the numbers of exchanged bytes with other nodes, which is called the
debt ratio. Nodes that have sent more data than have received have a
higher debt ratio, and a client preferentially selects such nodes when
she receives a data chunk. On the other hand, nodes that receive more
data have a lower debt ratio, which will get fewer incentives from the
system (The incentive issues will be elaborated later on).

3.3. Metadata

The role of the “Metadata” module is to represent and manage
the information about objects, i.e., metadata. The metadata of an
object may include the information to verify the integrity of the object
(e.g., the hash value of the object), which chunks constitute the object
(e.g., chunk sizes, indexes), other attributes of the object (e.g., the
owner, size, access control), and the relations with other objects.

To this end, ‘“Metadata” should provide the following functions.
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» Metadata representation: Metadata should be represented in a
compatible and extensible fashion. Representation of metadata
should be devised for reusability of metadata and agnostic to
decentralized applications or development tools. Extensibility is
essential to allow for developers to make new types of metadata
for their application needs.

Metadata management: The metadata of an object is also an
object. As metadata has different characteristics from user data,
there can be other design issues when managing metadata —
whether to segment metadata into chunks like objects, how to
ensure the integrity of metadata, and so on.

In most of the proposals we surveyed, the representation of meta-
data or the attributes of an object is specialized to their systems [13,
25,38]. They typically use a fixed structure of metadata or a predefined
set of attributes. For example, Storj represents metadata as a set of
key-value pairs, and it only contains a fixed set of information such as
chunks and encryption. Dat uses metadata feeds to represent metadata
of an object, which contains a set of simple file attributes similar to
those of UNIX file systems. On the other hand, some proposals support
the extensible representation of metadata. Solid, for example, repre-
sents every object, including metadata based on Linked Data principles,
which can express any kind of attributes such as a relation between
objects.

However, existing solutions usually do not specify how to manage
metadata clearly. What we have found in metadata management in the
solutions are (1) Dat manages a single metadata for each file object,
and stores a metadata feed containing whole metadata in the root
directory of a Dat repository, and (2) Solid treats metadata (such as
object relation) equally as any other objects.

3.4. Privacy

The “Privacy” module is responsible for protecting user privacy.
Depending on the sensitive nature of user data, the owner of the data
may wish to control what entities (i.e., other users and apps) can
access what data. If the owner posts an opinion that can be shared
with everyone, there may be no need for access control. However,
personal pictures may have different requirements; some pictures can
be shared with friends, and other pictures should be shared only
with family members. Thus, the “Privacy” module should support the
flexible control on which objects can be accessed by which entities.

In addition, a user may wish to hide her real-world identity when
publishing her objects. Suppose that a user has published a review of
products with her real-world identity (e.g., her name). Depending on
the products, it may leak her preferences, religion, political stance, or
income level. Therefore, her identity may have to be replaced with a
random-looking identifier, such as a hash of her public key. Even the
identifier itself is random-looking, a series of activities may leak a user’s
real-world identity [69,70]. For example, if a user publishes a series
of restaurant reviews along with visiting times, her identity might be
revealed. Therefore, it is vital to support a user to easily change her
identifier whenever needed.

The “Privacy” module provides the following functions.

» User data access control: This function controls which users
can access which objects. Access control is done based on access
control lists (ACLs) stored in the metadata of the objects.

User online behavior protection: User data includes not only
User-Generated Content (UGC) but also the records of users’ on-
line behaviors: e.g., a history of which websites a user has visited
and what the user is searching for. The user’s online behaviors
should be protected according to the user’s privacy policy.
Object encryption/decryption: When a decentralized applica-
tion uses a decentralized storage system such as IPFS, an object
(or its chunks) is stored on any participating nodes in the network.
To prevent the nodes from accessing the object without authoriza-
tion, it is necessary to encrypt the object. Also, the authorized
user/app should be able to decrypt the object.
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+ Anonymization: When an object owner wants to hide her real-
world identity, “Privacy” should support anonymization by pro-
viding the pseudonymity and unlinkability. Pseudonyms can be
used to hide the real identity of the object owners. Moreover,
the unlinkability prevents an attacker from tracking a series of
activities of the same user; usually, multiple pseudonyms are used
for the same user to provide the unlinkability.

Existing solutions have some functions related to the “Privacy” mod-
ule as follows. Solid supports access control through the Web Access
Control (WAC) based on the ACL. YaCy mitigates the privacy leakage
issue of online user behaviors by hashing the user’s search keywords
in forwarding user requests in the P2P network. Storj deals with object
encryption/decryption systematically. Every object in Storj is split into
segments, and encryption is performed at the segment level. A user
uses different keys for different objects in Storj. For the anonymization,
existing solutions (including DID, IPFS, Storj, and Dat) use public keys
(or their hashes) for user identifiers. They have a basic anonymization
mechanism since they use a public key as the key owner’s pseudonym,
but do not provide the unlinkability in the system.

3.5. Application

From the “Locating & Delivery” module to the “Privacy” module,
our reference framework covers from ‘how to store/retrieve data ob-
jects’ to ‘how to represent metadata’ to ‘how to protect objects from
unauthorized accesses.” The remaining part provides an abstraction to
application users, such as how to browse the decentralized Internet and
how to find the object distributed on the decentralized Internet, which
is called the “Application” module.

The “Application” module can include various functions as needed
by end-user application software. Among such functions, to search
for objects and to browse the Internet serve as primitive application
programming interfaces (APIs).

» Browsing: A browsing function shows web pages on the decen-
tralized Internet to users. Browsing on the conventional Internet
means accessing a particular server (specified in the URL) using
existing end-to-end protocols such as HTTP. However, web pages
may be stored across multiple nodes in the decentralized Internet.
Thus, browsers for the decentralized Internet should be able to
understand protocols that retrieve web pages from multiple points
in a decentralized fashion. Furthermore, browsers may optionally
cache and serve web pages. In this way, the availability of web
pages can be increased.

Searching: A searching function is to find a user’s object of
interest among the crawled-and-indexed objects. Conventional
search engines collect web pages through crawling, parse web
pages to generate indexes, and rank web pages through ranking
algorithms. The problem is that the crawled web pages and in-
dexes are consolidated, and the search engine might return biased
results by sponsorship or censorship. Thus, a decentralized search-
ing function must allow nodes to crawl, index, and rank the web
pages in a decentralized fashion. Note that the indexed results
might be ranked by the same or different ranking algorithms.

The existing solutions related to the “Application” module are
Beaker and YaCy. The Beaker web browser operates based on the
decentralized protocol Dat and provides the caching function for users
to seed web pages. YaCy is a decentralized search engine operating
on a P2P network, where each node crawls and indexes web pages.
As individual nodes run their ranking algorithm, there is no global
coordination yet.



T.T. Kwon et al.

3.6. ID

An identifier (ID) is necessary for identifying the following entities
in the proposed framework: users (i.e., object owners or object con-
sumers), nodes, objects, chunks, and metadata. To represent the data
ownership, we need to specify who (i.e., the user) owns what (i.e., the
object). Also, to retrieve the chunks of an object, we need to figure out
from where (i.e., the participating node) we can retrieve what (i.e., the
object, chunk, or metadata).

+ User ID: A user ID indicates a user in the decentralized Internet
such as an object owner or an object consumer. A representative
ID scheme in the decentralized Internet is DIDs [14]. Users of the
decentralized Internet need public key pairs, for example, to sign
their objects. In DIDs, the public key of a user is included in her
DID document. For instance, we can use the hash value of the
user’s public key as the user’s DID. Then, we can validate (i) the
user’s DID by comparing with the hashed value of the public key,
and (ii) the authenticity of objects (signed by the user’s private
key) with the public key.

Node ID: A node ID is needed to identify a participating node.
In the decentralized Internet, nodes contribute their resources
(e.g., storage, bandwidth) and get rewards. Thus, nodes need a
public key pair since they should authenticate themselves when
they make contributions and get rewards. As similar to user IDs,
DIDs can be adopted for node IDs. Furthermore, a node can
describe its own properties, such as its link bandwidth, storage
space, and unit cost of storage in its DID document.

Object ID: An object ID represents an object such as a web
page or an image file. An object ID can be generated as its hash
value (e.g., content identifier (CID) [71]). A user that retrieves a
particular object can verify its integrity with its object ID. In the
CID scheme, the ID of an object contains the hash algorithm, the
encoding scheme, and the type of the object (e.g., image, text) as
well as its hash value.

Chunk ID: A chunk ID identifies a chunk that constitutes an
object. The CID scheme can also be used to indicate a chunk.
Metadata ID: There are two main approaches for constructing a
metadata ID: (1) the hash value of the metadata itself and (2)
the derived form from the corresponding object ID. The former is
similar to the case of an object ID and a chunk ID, which helps
to prevent tampering. The latter may be constructed by adding a
prefix or suffix to its object ID. Thus, we can easily verify whether
the metadata is related to the corresponding object.

Recall that the existing solutions support only a subset of the above
IDs. The DIDs scheme is appropriate for user IDs as well as node IDs,
while the CID scheme is more relevant to object IDs or chunk IDs.

3.7. Incentivization

For operating applications and systems in the decentralized Inter-
net, resources from individuals and organizations are needed, which
highlights the importance of the Incentivization module. Another kind
of contribution from users for decentralized applications is user data:
UGC or online behaviors. The use of the user data may also require
compensation. One of the notable incentive examples is Bitcoin [75].

Bitcoin issues its token as a reward to operate its blockchain system
by introducing a mining mechanism. The token incentivizes a miner to
contribute by finding a nonce to construct a valid block in the ledger.
As a token is issued for each block, Bitcoin is working as an economic
system by circulating the tokens.

The following are the functional requirements of incentive systems
for the framework.
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+ Incentives for resources: Rewards for storage and delivery of
data are required for operating decentralized Internet services.
The reward for computing data may also be given when compu-
tational tasks are delegated to nodes that cannot benefit from the
tasks. A decentralized application service provider should devise
how to pay for the resources based on the resource usage.

Incentives for user data: In the current Internet, data (UGC)
creators are increasingly compensated, usually depending on the
popularity of their content. Youtube may be a notable example
as its platform shares the advertisement profit with its content
uploaders. However, data about online user behaviors are not
normally compensated, which should be addressed. The Incen-
tivization module in the reference framework should keep track of
the data usage (of both UGC and online behaviors) based on data
ownership and access control, and an application service provider
should establish a reward system based on the usage information.

Some of the decentralized Internet solutions include incentive mech-
anisms. For instance, Storj has an incentive mechanism that rewards
storing and delivering data, whereas IPFS does not have any incen-
tives. Instead, Filecoin [74] based on the IPFS architecture incentivizes
storing data continuously for persistent data storage [79].

Users get rewarded for user-created data on some decentralized
data platforms. Steemit [76], a blockchain-based blogging and social
media platform, rewards users with its own tokens for creating and
curating content based on voting and their token shares (i.e., capital
contributions). DTube [77], a decentralized platform for uploading and
sharing video, rewards users with its tokens based on voting from other
users.

3.8. Summary of the reference framework

The reference framework is intended to encompass the comprehen-
sive issues of the decentralized Internet. Thus, the existing solutions
are deemed to cover a subset of functions in the reference framework.
A summary of each module of the reference framework is presented in
Table 3.

“Locating & Delivery” is responsible for finding and delivering
data in the decentralized Internet, requiring three functions: locating
objects, delivering objects, and checking the integrity of objects. They
are partially covered in IPFS, Storj, Dat, and Blockstack. “Strategy” im-
proves the availability of data through object replication, node entrance
control, and node reputation management. Some of these functions are
performed in IPFS and Storj. “Metadata” defines how metadata is rep-
resented and managed. Some of metadata-related functions are imple-
mented in IPFS, Dat, and Solid. “Privacy” preserves user privacy and
maintains the confidentiality of data. This module requires access con-
trol, privacy protection of online users, object encryption/decryption,
and anonymization functions. Solid and Storj have access control and
encryption/decryption functions, and YaCy provides protection of on-
line user behaviors. “Application” provides the necessary functions
for end-user application requirements. Browsing and search engines
are introduced as representative functions. Currently, web browsing is
provided by Beaker and searching is provided by YaCy. “ID” deals with
how to assign IDs to users, nodes, objects, chunks, and metadata in a
decentralized fashion. Individual ID schemes have their own structures
for the entities of their interest. For instance, DID focuses on how to
define identifiers of users and nodes and how to verify their public keys.
“Incentive” aims to promote peers’ participation in a given system
for higher availability. Users contribution to the system is typically
evaluated in terms of the storage capacity, network bandwidth, or com-
puting power. Storage incentives are considered in IPFS; computation
incentives are main drivers in cryptocurrency systems such as Bitcoin;
and user data forms the basis of incentivization in Steemit, DTube, and
Brave.
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Table 3

Summary of the reference framework.
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Module Description Required functions Related work Research issues
Locating Finds where data (and a node) is - Object locating IPFS [13], Storj [25], — Inefficiency of DHT
& delivery located & deliveries the data — Object delivery Dat [38], Blockstack
— Object integrity [46]
Strategy Improves availability of data — Replication IPFS [13], Storj [25], — Efficiency of replication
- Entrance control SAFE Network [68] — Reputation management overhead
- Reputation management
Metadata Describes how to represent — Metadata representation IPFS [13], Dat [38], Solid — Efficiency of access control
metadata to specify the properties - Metadata management [28] — Metadata ID construction
of data and how to manage it — Version control
Privacy Preserves the user privacy and - User data access control Solid [28], Storj [25], — Key management
the data confidentiality — User online behavior protection YaCy [42] — Unlinkability
— Object encryption/decryption
— Anonymization
Application Provides various functions as - Browsing Beaker [41], - Coordinated crawling & indexing
needed by end-user application — Searching YaCy [42] — Coordination of ranking
software — High search latency
ID Specifies to whom/which ID is - User IDs DID [14], Sovrin [48], lifeID — Compatibility
assigned & what we can do with - Node IDs [72], — Trust model
an ID — Object IDs Veres One [73]
- Chunk IDs
— Metadata IDs
Incentivization Motivates peers to participate — Storage incentive IPFS (Filecoin) [74], — Amounts of reward

in the system operations, who
contribute resources or data

— Delivery incentive
— Computation incentive
- Data incentive

— Methods of reward
— Sources of reward

Bitcoin [75], Steemit [76],
DTube [77],
Brave rewards [78]

4. Challenging issues on the decentralized internet

In this section, we highlight challenging issues that are not covered
or poorly performed by the existing technologies for each module of
the reference framework in Section 3.

4.1. Issues on locating & delivery

The goal of “Locating & Delivery” is storing and retrieving objects
in a decentralized fashion. DHT is the most popular mechanism for
this goal; however, the real-world scalability in a pure DHT is still in
question [80,81].

+ Inefficiency of DHT: The inefficiency of DHT due to overlay rout-
ing is still a drawback. Since DHT does not consider geographical
locality, a query might go back or forth across the globe [80].
While some recent schemes suggest DHT modifications to allevi-
ate such problems, its inherent inefficiency results in substantial
delays when locating objects.

4.2. Issues on strategy

“Strategy” is responsible for increasing the availability of objects.
The higher availability can be achieved by managing the reputation of
nodes, and storing multiple replications of objects. In order to enhance
the availability of system, there are the following issues:

« Efficiency of replication: As the number of copies increases,
the availability improves. However, at the same time, it wastes
storage resources. A system should be designed by considering
a trade-off between the storage efficiency and the availability
level. It is worth considering the reputation (or trustworthiness)
of nodes in deciding the redundancy level of replication.

Reputation management overhead: The system should keep
track of the reputation of nodes, which should be accessible by
all participating nodes. A simple way to manage the reputation
is to have a central node to keep track of all nodes’ reputation,
which is however another type of data consolidation. In order
to manage reputation in a fully decentralized fashion, each node
needs to maintain/manage the reputation of other nodes in the
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network. The trade-off between the management overhead and
the concentration may also have to be balanced.

4.3. Issues on metadata

“Metadata” specifies how objects are represented and managed. We
have identified the following issues that require further research:

« Efficiency of access control: One straightforward way to imple-
ment access control is to maintain an access control list for each
object. The access control list of a given object determines who is
authorized to access (e.g., read or write) the object. Solid takes
a similar approach to the access control list. However, Solid’s
management overhead of access control lists is potentially in
proportion to the number of objects and the number of users. To
reduce the overhead, one alternative is to group users depending
on their relations to the owner (say, family, friend, or colleague)
in the access control list. Note that there is a trade-off between
the granularity and the overhead of access control.

Metadata ID construction: As the metadata has different charac-
teristics from user data, they may have to be handled differently
from other objects. We believe that there are two main ap-
proaches on how to construct metadata IDs. First, like data objects
(in most solutions), a metadata ID is the hash of its content. In this
way, tampering with the attributes of the metadata is not easy.
However, in such cases, the relation between the data object and
its corresponding metadata object must be managed and retrieved
by an additional mapping mechanism. Second, the metadata ID
can be derived from the corresponding object ID (e.g., prepend-
ing a prefix or appending a suffix to the object ID). With such
constructions, we need a mechanism to avoid tampering with the
metadata. For instance, the metadata may have to include the
owner’s signature, or the owner of the metadata (and its object)
encrypts the metadata.

Version control: When multiple users edit an object, and its
multiple versions are derived, it should be determined how to
manage their corresponding metadata. When multiple versions of
an object are created, there are two main approaches to manage
the metadata. The first is to give different IDs to the updated
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objects and generate metadata for each object. In other words,
a new version of the object is managed as if a new object is
created. In this case, the relations among the different versions
may have to be managed by a separate mechanism depending
on application requirements. For example, the version informa-
tion can be indicated in the object relation inside the metadata.
Integrity is easily guaranteed since different versions can use
their hash values as object IDs. The second is to keep the same
object ID for all the updated versions like Dat. In this case, the
metadata is generated for each new version, and the metadata of
each version describes and points to the corresponding version.
Thus, the relations between different versions can be maintained
through the same object ID.

4.4. Issues on privacy

“Privacy” is essential for protecting users’ private information. Since
the level of allowed exposure may vary based on the sensitivity of
the data, in some cases, complete concealment of user information
may be necessary. While current solutions offer privacy-related func-
tions, recent studies such as [69,70] indicate that users’ real-world
identities can still be exposed even with pseudonyms. Hence, several
challenges remain unaddressed by the existing solutions, which are
outlined below.

+ Unlinkability: Using a public key (or its hash) as an identifier
provides only basic anonymization; that is, an attacker might be
able to reveal a user’s real-world identity by tracking the behav-
iors of the same identifier. Currently, there is no work to provide
the unlinkability in the decentralized solutions in the literature.
It is desirable to support a user to use different pseudonyms
systematically in such a way that she need not be aware of using
different pseudonyms.

Key management: Object encryption/decryption should be sup-
ported to provide object confidentiality. It is essential to use
different keys for different objects. One of the well-known prob-
lems in this situation is for the data owner to securely distribute
keys only to authorized users/apps. For instance, Storj stores the
cipher information of encryption/decryption in a trusted database
in the Satellite. However, Storj does not specify how to manage
the keys.

4.5. Issues on application

“Application” is responsible for providing end-user services with the
necessary functions to browse and search for objects in the decentral-
ized Internet. However, there are still the following challenges.

» Coordinated crawling & indexing: The decentralized crawling
and indexing functions are performed by nodes in a P2P network,
where each node crawls and indexes web pages independently,
as YaCy does. However, this approach results in crawling the
same web page multiple times from a network-wide view. For
reducing such inefficient crawling and indexing, it is necessary
to coordinate the nodes so that the target ranges of crawling are
not overlapping.

Coordination of ranking algorithms: In the case of YaCy, each
node crawls web pages and generates the indexes of the web
pages. Also, each node runs a ranking algorithm to rank the
indexed web pages on its own. However, the comprehensiveness®
of crawled web pages of a single node is limited. Thus, the
coverage of search results will be improved if the indexed results
of participating nodes are merged in a coordinated manner [82].

6 1t indicates, for a given keyword, how much of the relevant web pages
are indexed.
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If the same ranking algorithm is used across the nodes, abus-
ing/biasing search results might be easier. If different ranking
algorithms are used, the coordination among the search results
will be crucial, not yet proposed in the literature.

High search latency: YaCy maintains a DHT for keywords. As
mentioned in the “Locating & delivery” module, a DHT lookup
can result in a substantial delay. By contrast, the result of a
DHT lookup for a search query is the list of peers who have the
indexes for the keywords in the query. Thus, to get the final result
consisting of relevant URLs, the client should set up connections
to the peers, which incurs additional delays.

4.6. Issues on ID

“ID” of the decentralized Internet encompasses not only users but
also nodes, objects, chunks, and metadata. The following aspects should
be further explored.

+ Compatibility: In order to make decentralized systems using the
above IDs interwork with the current Internet applications and
systems, at least some of the IDs need to be compatible with
the well-known protocols currently in use. For example, if user
IDs or node IDs based on DIDs are used for secure applications,
they might need data structures that are compatible with X.509
certificates used in Transport Layer Security (TLS) [83]. To this
end, we may upgrade TLS to be aware of DIDs, or create a new
DID-enabled certificate that can be used in TLS.

Trust model: The trust model for online identities on the con-
ventional Internet is built around certificate authorities (CAs)
and the public key infrastructure (PKI). Since this trust model
is a centralized model, we need a new one for decentralized
applications and networking. However, existing ID-related solu-
tions, such as DIDs, do not provide a trustworthy framework in
which anyone can verify whether online identities match real-
world ones. The web-of-trust model [84] is well known for no
centralized authority; however, several challenges should be ad-
dressed [85,86]. For example, a new certificate typically cannot
have enough endorsements.

4.7. Issues on incentivization

“Incentivization” improves the availability by motivating partici-
pants to contribute their resources more into the system. Although
Steemit and DTube use coin or token systems to incentivize users,
they cover only a small area of Internet applications like social net-
working or video platforms. Thus, there are several design issues for
incentivization that need to be addressed:

+ Amount of rewards: Designing an incentive system is not sim-
ple. It is sophisticated to design an economic system, and it is
important to strike a balance between payments and rewards
for resources. While users of a decentralized application usually
do not make commitments, a given system should make criti-
cal resources for system operations be supplied from its service
provider or from the resources of users in a reliable fashion (say,
a smart contract). For the data incentives, the amount of payout
can be decided by auctioning or a per-service policy.

Method of rewards: For distributed networking systems, the
method of rewards can be categorized into two types: implicit
and explicit. The implicit rewards have been proposed for de-
centralized systems, e.g., peer-selection [21,87] and reputation
mechanisms [88] in P2P systems. In the case of peer-selection
(e.g., tit-for-tat schemes), contributors to the system are rewarded
with more chances to be selected, resulting in better performance.
As to the reputation mechanism, a reputation score is calculated
based on the history of a peer’s activities. Then, the peer will be
incentivized to increase her score. The explicit reward typically
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takes a form of a token system based on a cryptocurrency like
Ethereum. By designing issuing and allocating mechanisms of
tokens, an explicit reward system for a decentralized application
can be established without a central entity.

Sources of rewards: A survey on blockchain incentive mech-
anisms [89] shows that the existing blockchains (or their ap-
plications) normally have issuing and allocating mechanisms
of tokens. That is, decentralized applications can have inter-
nal sources of rewards. Otherwise, monetary rewards should
be provisioned from external sources, e.g., application service
providers, subscription fees (periodical fee or pay-per-view), or
advertisement/marketing.

5. Conclusions

This paper makes the following contributions:

1. Investigating the data consolidation problem: We investigated
the data consolidation problem on the current Internet. While
legal regulations have been made to mitigate the problem, we
emphasized that they cannot be fundamental solutions.

2. Surveying the existing solutions for decentralization: We sur-
veyed the existing technical solutions for decentralization, which
are classified by their similarity. We also explained their differ-
ences and limitations. We found that each solution addresses its
own scope of problems, usually from a limited point of view.

3. Suggesting the reference framework: To address the limita-
tions of the existing solutions, we designed the holistic refer-
ence framework for the decentralized Internet. The reference
framework considers not only networking functions (e.g., locat-
ing/delivering a particular object, reliable data transmissions),
but also user/system requirements such as user privacy and
incentivization. In the decentralized Internet, the owner of user
data should have sovereignty; thus, functions such as access
control and privacy protection are required. Additionally, ID
systems should be decentralized to prevent the single point of
dependency and power concentration.

4. Presenting future research issues: We analyzed which solutions
cover which functions in each module of the reference frame-
work for the decentralized Internet. Base on this, we presented
challenging issues and directions for further research by iden-
tifying functions that cannot be met by the related work in
Section 4.

While we introduced the technical approaches to decentralization,
the data consolidation problem is also a socio-economic issue [4].
Indeed, governments of many countries are enacting legislations to
counter data consolidation. Despite these efforts, the standardization
efforts of legal and technical solutions to the decentralized Internet are
still insufficient and often not cooperative across the world. We expect
that the survey of technical solutions for addressing the data consolida-
tion problem and the suggestion of the reference framework for general
decentralized applications in this paper will facilitate further studies
towards the international standardization of the decentralized Internet.
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